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Abstract—This paper addresses the experimental study of
the wide band signal estimation and reconstruction using the
established compressive sampling (CS) methods. For this purpose,
a hardware test bed was setup inter-connecting a wide band
SDR based hand held military radio (SWAVE HH or HH),
vector signal generator, bi-directional coupler, attenuators, PC
and other auxiliaries. Real-world communication signals were
created by the signal generator and SWAVE HH was used to
scan these signals. The discrete samples from the HH were
collected on PC for reconstruction and application of CS. Itwas
shown that good reconstruction of the acquired wide band signal
is possible with sub-Nyquist rate sampling by means of signal
reconstruction under CS framework. In the end, mean squared
error (MSE) performance is shown to indicate better estimation
and reconstruction of the signal with higher compression rate
and higher sparsity.

I. I NTRODUCTION

Software Defined Radio (SDR) is a communication device
in which some or all of the physical layer functions are defined
in software. Traditionally, Cognitive Radio (CR) is assembled
upon SDR [1], [2]. CR is a technology that allows unlicensed
users to access the licensed frequency bands opportunistically.
Hence, spectrum awareness is of prime importance for CR
terminals. Spectrum awareness, in addition to open database
(as in IEEE 802.22), typically comes from spectrum sensing
which can be achieved by means of different methods, for
example, matched filter detection, cyclo-stationary detection
or energy detection [3]. Matched filter is a coherent detector
and requires a priori information of the licensed users’ signals
thus increasing the CR complexity. Cyclo-stationary detector
make use of some of the inherent properties of the licensed
users’ signals and uses computationally complex algorithms to
identify the spectrum holes. Energy detector is a non-coherent
or blind detector which only measures the energy of the re-
ceived signal, and takes decision on spectrum availabilityafter
comparing the measured energy with a predefined threshold.
Each of these methods has its own pros and cons, however,
energy detection appears as a preferred choice for CRs with
limited computational power, due to their low implementation
complexity.

Lately, there has been much interest shown by researchers
on the analysis of energy detectors both in narrowband [4], [5]
and wideband regimes [6], [7]. Nevertheless, the task of spec-

trum sensing becomes increasingly difficult for wideband sig-
nals. It is because the receiver requires to sample the wideband
signals at or above Nyquist rates. This, in turn, requires very
high-rate analog-to-digital converters (ADC) which increases
the cost of the CR terminals. To overcome this shortcoming,
compressive sampling (CS) [8] has stormed into the signal
processing research for the purpose of spectrum estimation
and reconstruction. Literature on CS shows that a sparse signal
can be recovered from random or random like samples taken at
sub-Nyquist rates. Due to low spectrum occupancy by licensed
users, the signals in CR networks are typically sparse in the
frequency domain. Recovery using CS requires intense, non-
linear optimization to find the sparsest solution. One solution
to this is by means of Convex Programming as in Basis
Pursuit (BP) method [9]. BP is a technique for decomposing
a signal into an optimal superposition of dictionary elements
and the optimization criterion is thel1 -norm of coefficients.
The other solution is the usage of Greedy Algorithms, such
as Matching Pursuit (MP) and Orthogonal MP (OMP) [10],
[11]. For instance, MP iteratively incorporates into the recon-
structed signal the component from the measurement set that
explains the largest portion of the residual from the previous
iteration. OMP additionally orthogonalizes the residual against
all measurement vectors selected in previous iterations.

This work addresses the applicability of CS approach to
spectrum estimation and reconstruction to real world commu-
nication data acquired from a wide band SDR based hand
held military radio (SWAVE HH or HH) [12]. For these
purposes, a test bed was assembled for a frequency range
of interest, consisting of a HH interconnected with the PC;
vector signal generator; and the corresponding auxiliaries. For
the demonstration purpose, we choose to implement a con-
ventional CS approach, i.e., BP. To find the sparsest solution,
BP requires to solve the complex optimization problem for
an underdetermined system of equations. The Primal-Dual
(PD) interior-point method solves this convex optimization
by using the classical Newton Method. Performance of the
scheme was evaluated for different values of compression
rates. It was shown that through application of CS, sub-Nyquist
rate sampling can achieve good signal reconstruction. This
is particularly useful because it can reduce the cost incurred
by high rate ADCs. In the end, performance is also shown



in terms of Mean squared error (MSE) of the reconstructed
waveform under different compression ratios.

The rest of the paper is organized as follows. Section II
describes the system model and CS preliminaries. Section III
outlines the test bed architecture while experimental results
are presented in Section IV. Finally, the paper is concludedin
Section V along with some future directions.

II. SYSTEM MODEL AND CS PRELIMINARIES

Herein, we explain our system model along with the pre-
liminaries of compressive sampling along the lines of [6].
The received time-domain wideband signal at the HH can be
expressed as,

r(t) = h(t) ∗ s(t) + w(t) (1)

where h(t) is the channel coefficient between transmitter
and HH, s(t) denotes the transmitted signal,∗ denotes the
convolution operation andw(t) is the additive white gaussian
noise (AWGN) with zero mean and power spectral densityσ2

w.
In order to observe the frequency response of the received

signal, anN -point discrete fourier transform (DFT) is taken on
r(t). Collecting the frequency-domain samples into anN × 1
vectorrf , we have

rf = Dhsf + wf (2)

whereDh = diag(hf ) is anN ×N diagonal channel matrix,
andhf , sf andwf are the discrete frequency-domain samples
of h(t), s(t) andw(t), respectively. In general form, this signal
model can be written as,

rf = Hfsf + wf (3)

Given the above expression, the spectrum sensing task boils
down to estimatingsf in (3) provided we haveHf andr(t).
However, since we have a wideband signal at our disposal, it
will be beneficial to apply CS framework to relieve high sam-
pling rate (Nyquist rate) ADC requirements. Recent advances
in CS have demonstrated reliable signal reconstruction at sub-
Nyquist rate sampling via computationally feasible algorithms,
such as BP, MP or OMP.

At first, the compressed time-domain samples are collected
at the receiver. For this, a compressive sampling matrixSc

is adopted to collect aK × 1 sample vectorxt from r(t) as
follows:

xt = Scrt (4)

wherert is theN × 1 vector of discrete-time representations
of r(t) at the Nyquist rate withK ≤ N , and Sc is the
K×N projection matrix. There are various designs introduced
in literature for compressive sampler such as non-uniform
sampler [13] and random sampler [14], [15].

With the K compressed measurements, the frequency re-
sponsesf can now be estimated in (3). Noting thatrt =
F

−1

M rf , we can write

xt = S
T
c F

−1

M Hfsf + w̃f (5)

wherew̃f = S
T
c F

−1

M wf is the noise sample vector which is
white gaussian. In CR networks, the spectrum occupancy by

Fig. 1. Simplified block diagram of the assembled test-bed.

the licensed users is typically low. Thus the signal vectorsf

is sparse in frequency domain with few non-zero entries. The
sparsity is measured byp-norm||sf ||p, p ∈ [0, 2), wherep = 0
indicates exact sparsity.

Thus, equation (5) is a linear regression problem with signal
sf being sparse. This signalsf can be reconstructed by solving
the following linear convex optimization problem:

min
sf

||sf ||1, s.t. xt = S
T
c F

−1

M Hfsf (6)

There are different methods to solve this optimization problem,
for example, by means of Convex Programming as in BP
method or by usage of Greedy Algorithms such as MP or
OMP.

III. SDR TEST-BED SETUP

In this section, we will briefly outline the SDR test-bed
setup which we used to obtain our required real world exper-
imental data. More details about the test bed assembly can be
found in [16].

A test bed was assembled for a frequency range of interest,
consisting of a HH interconnected with the PC, vector signal
generator and the corresponding auxiliaries. A simplified block
diagram is shown in Fig. 1. Agilent E4438C signal generator
is used to generate various real-world, as well as custom,
wideband and narrowband signals. The signal generator is
connected to Agilent 778D 100MHz - 2GHz dual directional
coupler with 20 dB nominal coupling, by means of a coaxial
RF cable. Use of coaxial cable allows us to repeat the
experiment under same conditions, eliminating uncertainties
of wireless transmission. On each end of the coupler, two
programmable attenuators of 30 dB attenuation value were
connected. HH was then connected to the attenuator by means
of RF cable and was also connected to the PC through
serial port. HH is a fully operational SDR transceiver capable
of processing various wideband and narrowband waveforms.
Currently, two functional waveforms are installed on the radio:
SelfNET Soldier Broadband Waveform (SBW) and VHF/UHF
Line Of Sight (VULOS), as well as the waveform provid-
ing support for the Internet Protocol (IP) communication in
accordance with MIL-STD-188-220C specification [17]. HH
has 12-bit analog-to-digital converter (ADC) which performs
the sampling of incoming signals at very high rates of 250
Msamples/sec, and it is capable of scanning 120 MHz of
wideband. The digitized signal is then issued to the FPGA,
where it undergoes down conversion, matched filtering and
demodulation. Being a military technology, several technical
characteristics of SWAVE HH , i.e., processor specifications
and more in-depth operational details are inclosable.
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Fig. 2. (a) Received 3 MHz wide band gaussian waveform; (b) reconstruction
at 50% compression ratio; (c) reconstruction at 75% compression ratio.

Several interfaces are available on the HH, namely, 10/100
Ethernet, USB 2.0, RS-485 serial, DC power interface and
PTT. Ethernet connection on the SWAVE HH is used for the
remote control of the HH, using Simple Network Manage-
ment Protocol (SNMP) while serial connection is used for
transferring the spectrum snapshots from HH to PC. Since the
data transfer rate of the serial port is low, i.e., 115200 bits/s,
therefore, real time transfer of samples is not possible from the
ADC of HH. Because of this, 8192 samples are transmitted
from the ADC over the RS-485 serial port every 1.3 seconds.
It is a functionality hard-coded in the HH’s FPGA. Specifically
speaking, the output of ADC contains discrete samples of the
wideband signal. These samples are stored in an internal buffer
of the FPGA and output through HH’s serial port to the PC,
where they can be processed. Because 8192 samples make the
waveform analysis a difficult task due to the low frequency
resolution, multiple snapshots of the spectrum are taken and
analyzed at once. Once that the satisfying number of samples
is collected and transferred to the PC, CS may be performed.

IV. EXPERIMENTAL RESULTS

For our experiments, we generated two different kinds of
waveforms from the Agilent E4438C vector signal generator,
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Fig. 3. (a) Received 250 KHz narrow band GSM waveform; (b) recon-
struction at 50% compression ratio; (c) reconstruction at 75% compression
ratio.

namely;

1) 3 MHz wide band gaussian waveform, and
2) 250 KHz narrow band GSM waveform.

These two waveforms were centered at 75 MHz and 38
MHz carrier frequencies before transmission. At the receiver
side, SWAVE HH scanned the entire 120 MHz of bandwidth
to locate these waveforms. The HH outputs 8192 digitized
samples every 3 seconds from its serial port. Because 8192
samples are not sufficient to observe a meaningful waveform,
we capture multiple bursts, i.e., 8192×10 samples to construct
meaningful waveforms. These samples are then gathered on a
PC through the serial port for the application of CS.

Reconstruction: In Fig. 2, we show the received wide
band 3 MHz gaussian signal in frequency-domain and its
reconstructed versions with 50% and 75% of compression
ratios. It can be seen that reconstruction atK/N = 0.75
appears better than the reconstruction atK/N = 0.5. The
same trend is observable in Fig. 3 where we plot the 250
KHz GSM waveform with its reconstructed versions with
compressed samples. However, the reconstruction of GSM
signal appears better even with lowK/N ratio of 0.5. It is
because the GSM signal has more sparsity (or zero elements)
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Fig. 4. MSE performance of 250 KHz GSM waveform compared with3
MHz gaussian waveform at different compression rates.

compared to the 3 MHZ wide band signal, permitting for better
reconstruction even with low compression ratios.

MSE Performance: We compare the normalized MSE of the
reconstructed 3 MHZ signal with that of 250 KHz signal, at
varying compression rates in Fig. 4. The normalized MSE is
defined as

MSE = E

{

||̂s− s||2
2

||s||2
2

}

(7)

where s is the signal vector sampled at Nyquist rate (or in
our case at8.192 × 104 samples) whilês is the estimated
signal vector with compressed samples. We can see that
MSE decreases with increasingK/N ratio. Furthermore, MSE
performance of 250 KHz signal is better than the 3 MHz signal
due to higher sparsity.

V. CONCLUSION AND FUTURE WORK

In this work, we conducted an experimental study of the
compressive sampling based wide band signal estimation and
reconstruction. To gather real-world communication data,a
hardware test bed was setup consisting of an SDR based radio,
signal generator, PC and corresponding auxiliaries. Different
real-world signals were captured by the HH and studied
under CS framework. It was shown that reconstruction was
successfully achieved with fewer than the Nyquist rate samples
on real-world communication data. MSE performance was also
shown to improve with higher sparsity in the data and higher
compression ratios.

In future, we plan to connect two more SWAVE HH at
the input port and scan various pre-installed waveforms from
these HHs by means of a third HH. We also plan to study and
implement various collaborative spectrum sensing algorithms
based on the CS framework, which allows for more reliable
spectrum holes detection in wide band regime and improves
the overall spectrum utilization.
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