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Abstract—This paper addresses the experimental study of trum sensing becomes increasingly difficult for widebard si

the wide band signal estimation and reconstruction using th nals. It is because the receiver requires to sample the aikeb

established compressive sampling (CS) methods. For this ose. gjgnals at or above Nyquist rates. This, in turn, requirey ve
a hardware test bed was setup inter-connecting a wide band high-rate analog-to-digital converters (ADC) which inases
SDR based hand held military radio (SWAVE HH or HH), 9 9 g

vector signal generator, bi-directional coupler, attenugors, PC  the cost of the CR terminals. To overcome this shortcoming,
and other auxiliaries. Real-world communication signals vere compressive sampling (CS) [8] has stormed into the signal
created by the signal generator and SWAVE HH was used to processing research for the purpose of spectrum estimation
scan these signals. The discrete samples from the HH wereynq yaconstruction. Literature on CS shows that a sparsalsig

collected on PC for reconstruction and application of CS. Itwas b df d d lik les tak t
shown that good reconstruction of the acquired wide band sigal can be recovered irom random or random like samples taken &

is possible with sub-Nyquist rate sampling by means of signa SUb-Nyquist rates. Due to low spectrum occupancy by licgnse
reconstruction under CS framework. In the end, mean squared users, the signals in CR networks are typically sparse in the
error (MSE) performance is shown to indicate better estimalon  frequency domain. Recovery using CS requires intense, non-
and reconstruction of the signal with higher compression r& |inear optimization to find the sparsest solution. One émiut
and higher sparsity. L . . .
to this is by means of Convex Programming as in Basis
Pursuit (BP) method [9]. BP is a technique for decomposing
a signal into an optimal superposition of dictionary eletsen
Software Defined Radio (SDR) is a communication devi@nd the optimization criterion is thg -norm of coefficients.
in which some or all of the physical layer functions are defineThe other solution is the usage of Greedy Algorithms, such
in software. Traditionally, Cognitive Radio (CR) is asséetb as Matching Pursuit (MP) and Orthogonal MP (OMP) [10],
upon SDR [1], [2]. CR is a technology that allows unlicensefd 1]. For instance, MP iteratively incorporates into theae-
users to access the licensed frequency bands opportatfiistic structed signal the component from the measurement set that
Hence, spectrum awareness is of prime importance for @Rplains the largest portion of the residual from the presio
terminals. Spectrum awareness, in addition to open databasration. OMP additionally orthogonalizes the residugdiast
(as in IEEE 802.22), typically comes from spectrum sensiradl measurement vectors selected in previous iterations.
which can be achieved by means of different methods, forThis work addresses the applicability of CS approach to
example, matched filter detection, cyclo-stationary d&iac spectrum estimation and reconstruction to real world commu
or energy detection [3]. Matched filter is a coherent detectnication data acquired from a wide band SDR based hand
and requires a priori information of the licensed usershalg held military radio (SWAVE HH or HH) [12]. For these
thus increasing the CR complexity. Cyclo-stationary detec purposes, a test bed was assembled for a frequency range
make use of some of the inherent properties of the licenseflinterest, consisting of a HH interconnected with the PC;
users’ signals and uses computationally complex algosttun vector signal generator; and the corresponding auxiSafer
identify the spectrum holes. Energy detector is a non-aafterthe demonstration purpose, we choose to implement a con-
or blind detector which only measures the energy of the reentional CS approach, i.e., BP. To find the sparsest salutio
ceived signal, and takes decision on spectrum availalifisr BP requires to solve the complex optimization problem for
comparing the measured energy with a predefined threshad. underdetermined system of equations. The Primal-Dual
Each of these methods has its own pros and cons, howe{ED) interior-point method solves this convex optimizatio
energy detection appears as a preferred choice for CRs with using the classical Newton Method. Performance of the
limited computational power, due to their low implemerdgati scheme was evaluated for different values of compression
complexity. rates. It was shown that through application of CS, sub-istqu
Lately, there has been much interest shown by researcheite sampling can achieve good signal reconstruction. This
on the analysis of energy detectors both in narrowband®4], [is particularly useful because it can reduce the cost irecurr
and wideband regimes [6], [7]. Nevertheless, the task of-spdy high rate ADCs. In the end, performance is also shown

I. INTRODUCTION



in terms of Mean squared error (MSE) of the reconstructe:
waveform under different compression ratios.

The rest of the paper is organized as follows. Section | Jx
describes the system model and CS preliminaries. Section | sienal 0 cior Bi-directional Attenuator | SWAVE
outlines the test bed architecture while experimentalltesu " coumer "
are presented in Section IV. Finally, the paper is concluded
Section V along with some future directions.

PC for CS

Fig. 1. Simplified block diagram of the assembled test-bed.

Il SYSTEM MODEL AND CS FRELIMINARIES the licensed users is typically low. Thus the signal vestor

~ Herein, we explain our system model along with the pres sparse in frequency domain with few non-zero entries. The

liminaries of compressive sampling along the lines of [6kparsity is measured bynorm|[s||,, p € [0,2), wherep = 0

The received time-domain wideband signal at the HH can Rgjicates exact sparsity.

expressed as, Thus, equation (5) is a linear regression problem with digna
r(t) = h(t) * s(t) + w(?) (1) s/ being sparse. This sign@} can be reconstructed by solving

where h(t) is the channel coefficient between transmittdf€ following linear convex optimization problem:
and HH, s(t) denotes the transmitted signal,denotes the min|[S¢ll1, st x; = SZFXIIHfsf (6)
convolution operation and(t) is the additive white gaussian Sf
noise (AWGN) with zero mean and power spectral densfty There are different methods to solve this optimization pewt

In order to observe the frequency response of the receified example, by means of Convex Programming as in BP
signal, an/V-point discrete fourier transform (DFT) is taken ormethod or by usage of Greedy Algorithms such as MP or
r(t). Collecting the frequency-domain samples intoldnx 1 OMP.

vectorry, we have lIl. SDR TEST-BED SETUP

ry =Dpsy +wy (2)  In this section, we will briefly outline the SDR test-bed
whereD,, = diag(h;) is anN x N diagonal channel matrix setup which we used to obtain our required real world exper-

andh;, s; andw are the discrete frequency-domain samplég‘ental data. More details about the test bed assembly can be

of h(t), s(t) andw(t), respectively. In general form, this signafound in [16]. _
model can be written as A test bed was assembled for a frequency range of interest,

consisting of a HH interconnected with the PC, vector signal
rp=Hssr +wy (3) generator and the corresponding auxiliaries. A simplifiledk

Given the above expression, the spectrum sensing task bglgqram is shown in Fig. 1. Agilent E4438C signal generator

down to estimating; in (3) provided we havé; andr (). IS used to generate various real-world, as well as custom,

However, since we have a wideband signal at our disposaly\’l'ldeband and narrowband signals. The signal generator is

will be beneficial to apply CS framework to relieve high Samgonnecteq to Agilent 77.8D 100MHZ - 2GHz dual d|rect|on_al
oupler with 20 dB nominal coupling, by means of a coaxial

pling rate (Nyquist rate) ADC requirements. Recent advanc F cable. U ¢ ial cable all ¢ t th
in CS have demonstrated reliable signal reconstructiontat s caple. LUse of coaxial cable allows us lo repeat he
experiment under same conditions, eliminating unceiitsgnt

Nyquist rate sampling via computationally feasible altforis, i .
Yq pling P Y gori of wireless transmission. On each end of the coupler, two

such as BP, MP or OMP. )

At first, the compressed time-domain samples are collectBpgrammable attenuators of 30 dB attenuation value were
at the receiver. For this, a compressive sampling maix connected. HH was then connected to the attenuator by means
is adopted to collect & x 1 sample vectox; from r(t) as of _RF cable a_nd was also qonnected to the .PC through
follows: serial port._HH is a fully pperatlonal SDR transceiver cdpab

X, = S.r, ) of processing various wideband and narrowband waveforms.
Currently, two functional waveforms are installed on theioa
wherer; is the N x 1 vector of discrete-time representationSelfNET Soldier Broadband Waveform (SBW) and VHF/UHF
of r(t) at the Nyquist rate withX’ < N, and S, is the Line Of Sight (VULOS), as well as the waveform provid-
K x N projection matrix. There are various designs introducedg support for the Internet Protocol (IP) communication in

in literature for compressive sampler such as non-uniforagcordance with MIL-STD-188-220C specification [17]. HH

sampler [13] and random sampler [14], [15]. has 12-bit analog-to-digital converter (ADC) which perfar
With the K compressed measurements, the frequency the sampling of incoming signals at very high rates of 250
sponsesy can now be estimated in (3). Noting that = Msamples/sec, and it is capable of scanning 120 MHz of
Fﬁrf, we can write wideband. The digitized signal is then issued to the FPGA,
;= SCTF;fH]@f + ) where it undergoes down conversion, matched filtering and

demodulation. Being a military technology, several techhi
wherew; = STF,!w; is the noise sample vector which ischaracteristics of SWAVE HH , i.e., processor specification
white gaussian. In CR networks, the spectrum occupancy agd more in-depth operational details are inclosable.
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Fig. 2. (a) Received 3 MHz wide band gaussian waveform; @@nstruction Fig. 3. (a) Received 250 KHz narrow band GSM waveform; (bjorec
at 50% compression ratio; (c) reconstruction at 75% consjpesratio. struction at 50% compression ratio; (c) reconstruction 5% Tcompression
ratio.

Several interfaces are available on the HH, namely, 10/100 ]
Ethernet, USB 2.0, RS-485 serial, DC power interface ar%mely’
PTT. Ethernet connection on the SWAVE HH is used for the 1) 3 MHz wide band gaussian waveform, and
remote control of the HH, using Simple Network Manage- 2) 250 KHz narrow band GSM waveform.
ment Protocol (SNMP) while serial connection is used foFhese two waveforms were centered at 75 MHz and 38
transferring the spectrum snapshots from HH to PC. Since thi¢iz carrier frequencies before transmission. At the remeiv
data transfer rate of the serial port is low, i.e., 115208/bjt side, SWAVE HH scanned the entire 120 MHz of bandwidth
therefore, real time transfer of samples is not possiblefitte to locate these waveforms. The HH outputs 8192 digitized
ADC of HH. Because of this, 8192 samples are transmitt@dmples every 3 seconds from its serial port. Because 8192
from the ADC over the RS-485 serial port every 1.3 secondsamples are not sufficient to observe a meaningful waveform,
It is a functionality hard-coded in the HH's FPGA. Specifigal we capture multiple bursts, i.e., 81920 samples to construct
speaking, the output of ADC contains discrete samples of theeaningful waveforms. These samples are then gathered on a
wideband signal. These samples are stored in an interrf@rbuPC through the serial port for the application of CS.
of the FPGA and output through HH’s serial port to the PC, Reconstruction In Fig. 2, we show the received wide
where they can be processed. Because 8192 samples make#mel 3 MHz gaussian signal in frequency-domain and its
waveform analysis a difficult task due to the low frequenayeconstructed versions with 50% and 75% of compression
resolution, multiple snapshots of the spectrum are takeh amtios. It can be seen that reconstruction atN = 0.75
analyzed at once. Once that the satisfying number of sampigspears better than the reconstructionfgtN = 0.5. The
is collected and transferred to the PC, CS may be performgdme trend is observable in Fig. 3 where we plot the 250
KHz GSM waveform with its reconstructed versions with
IV. EXPERIMENTAL RESULTS compressed samples. However, the reconstruction of GSM
For our experiments, we generated two different kinds sfgnal appears better even with loii/N ratio of 0.5. It is
waveforms from the Agilent E4438C vector signal generatdsecause the GSM signal has more sparsity (or zero elements)



12

11p

0.9

0.8

0.7r

MSE

0.6

0.3

0.2 I I I I
0 0.2 0.4 0.6 0.8

Compression Ratio (K/N)

Fig. 4. MSE performance of 250 KHz GSM waveform compared V@ith

MHz gaussian waveform at different compression rates.
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