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ABSTRACT

Cognitive Radio (CR) is defined as a radio that is aware
of its surroundings and adapts intelligently. While CR tech-
nology is mainly cited as the enabler for solving the spectrum
scarcity problems by the means of Dynamic Spectrum Ac-
cess (DSA), perspectives and potential applications of the CR
technology far surpass the DSA alone. For example, cog-
nitive capabilities and on-the-fly reconfiguration abilities of
CRs constitute an important next step in the Communication
Electronic Warfare (CEW). They may enable the jamming
entities with the capabilities of devising and deploying ad-
vanced jamming tactics. Analogously, they may also aid the
development of the advanced intelligent self-reconfigurable
systems for jamming mitigation. This work outlines the de-
velopment and implementation of the Spectrum Intelligence
algorithm for Radio Frequency (RF) interference mitigation.
The developed system is built upon the ideas of obtaining
relevant spectrum-related data by using wideband energy
detectors, performing narrowband waveform identification
and extracting the waveforms’ parameters. The recognized
relevant spectrum activities are then continuously monitored
and stored. Coupled with the self-reconfigurability of various
transmission-related parameters, the Spectrum Intelligence is
the facilitator for the advanced interference mitigation strate-
gies. The implementation is done on the Cognitive Radio
coaxial test bed architecture which consists of two Software
Defined Radio terminals, each interconnected with the com-
putationally powerful System-on-Module (SoM).

1. INTRODUCTION

As opposed to the legacy radio systems, where the function-
alities are for the most part restricted by the deployed hard-
ware components, Software Defined Radios (SDRs) provide
reconfigurability of most of their parameters through soft-
ware changes run on the programmable processors - Field
Programmable Gate Arrays (FPGAs) or Digital Signal Pro-
cessors (DSPs). Originally introduced by Mitola in 1991,
SDR is nowadays becoming a dominant design architecture
for wireless systems. Cognitive Radio (CR) is usually built on
a SDR platform, and is further embodied with awareness and
self-adapting capabilities. This, however, inherently brings

along higher implementation complexity and the needs for
even more powerful computational resources.

SDRs and CRs [1] have received particular interest from
the wireless communication research community as potential
solutions to spectrum underutilization problems. For these
purposes, a variety of Dynamic Spectrum Access (DSA) tech-
niques have been proposed and investigated. These may be
categorized under the three models: Dynamic Exclusive Use,
Open Sharing, and Hierarchical Access Models [2]. Oppor-
tunistic Spectrum Access (OSA) is a form of the Hierarchi-
cal Access Model, where unlicensed CRs (secondary users)
are allowed to utilize the spectrum as long as licensed (pri-
mary) users’ communication is protected. In order to access
the spectrum opportunistically, secondary users need to be
able to acquire the spectrum occupancy information. Three
methods enabling the spectrum occupancy inference are gen-
erally adopted: spectrum sensing, geolocation/database and
beacon signals. Among them, various spectrum sensing tech-
niques such as energy detection [3, 4], feature detection [5]
and matched filters [6] were given the most attention up to
date.

However, the potentials of SDR and CR paradigms are
not necessarily restricted to the application of DSA. Seam-
less transition between the existing communication solutions,
higher interoperability between different standards and flexi-
bility in waveform selection all impose themselves as the vi-
able reasons for research and development of the SDR and
CR concepts.

In this work, we focus on some of the impacts that the
SDR/CR technology brings to the Communication Electronic
Warfare (CEW) domain. CEW systems [7] focus on inter-
cepting or denying the communication on the target systems
(electronic attack) [8], or taking actions aimed at preventing
the electronic attacks from successfully occurring (electronic
defense). A multitude of ways with respect to how on-the-
fly reconfiguration capabilities coupled with the learning and
self-adaptive potentials of the CR technology may aid both
the attacking and the defending side can be imagined [9]. De-
ploying energy detection spectrum sensing may embody the
attacker with the ability to monitor the target transmitter’s
transmission frequency, estimate the target receiver’s signal
strength and calculate the signal strength necessary to effi-
ciently jam the communication. Performing feature detection



spectrum sensing may allow the attacker to infer even more
of the parameters of the target transmitter, such as deployed
modulation type or coding mechanism. Subsequently, it may
use these inferences to deploy jamming tactics with higher
probability of success rate, e.g. by taking advantage of the
fact that different modulation techniques are characterized by
different levels of resilience to interference. Finally, the at-
tacker may use learning techniques to observe and learn the
transmitter’s patterns, such as the deployed frequency hop-
ping or power allocation schemes. Analogously, similar ben-
efits may be provided to the defending side.

This work focuses on the electronic defense part of the
CEW. It presents ideas, development and implementation
aspects of the Spectrum Intelligence algorithm for Radio
Frequency (RF) interference mitigation. The concept is
built on the enabling technologies of spectrum sensing,
waveform analysis, Temporal Frequency Maps1, and self-
reconfigurability potentials of the SDR/CR technology.

Along the way, we acknowledge and address some of the
challenges faced when porting the algorithms to the real-life
SDR/CR platform, and propose practical solutions for the
identified problems.

The remainder of the paper is organized as follows: sec-
tion 2 describes the enabling technologies and concepts for
the Spectrum Intelligence algorithm, as well as the con-
cepts and functionalities related to the algorithm itself. The
SDR/CR platform used for porting the developed algorithms,
along with the identified issues and proposed solutions is
described in section 3. Performance of several crucial func-
tionalities of the algorithm is evaluated in section 4, whereas
conclusions and the roadmap are presented in section 5.

2. SPECTRUM INTELLIGENCE

The principal idea behind the Spectrum Intelligence algo-
rithm consists of continuously monitoring relevant RF spec-
trum activities, identifying potential threats to the communi-
cation, and taking proactive measures to ensure communica-
tion robustness and secrecy. For doing so, the algorithm relies
on the reliable spectrum sensing mechanism, correct identi-
fication and extraction of the relevant parameters, and secure
software unsubjected to tampering. The functional process
of the Spectrum Intelligence algorithm may be represented in
the form of the Cognitive Cycle, as shown in Figure 1.

Sensing is performed periodically, either by taking a quiet
or active approach, for the frequency band of interest.

Then, data processing takes place. Parsed data is time
aligned if needed, and transformed into frequency domain
by performing Fast Fourier Transform (FFT). Thresholding
is then performed with the aim of discarding the background
noise, and keeping only the FFT bins corresponding to actual

1We are intentionally creating a distinction between the Temporal Fre-
quency Maps, and the similar but more advanced concept of Radio Environ-
ment Maps [10].
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Fig. 1: Cognitive cycle representing the Spectrum Intelli-
gence algorithm

signals. This corresponds to solving the decision problem be-
tween the following two hypotheses [11]:

Y (n) =
{

W (n) H0
X(n)+W (n) H1

(1)

where Y (n), X(n) and W (n) are the received signals, trans-
mitted signals and noise samples, respectively, H0 is the hy-
pothesis corresponding to the absence of the signal, and H1 is
the hypothesis corresponding to the presence of the signal.

Finding the appropriate threshold is the principal chal-
lenge of any energy detection scheme. The most common
approaches are the Constant Detection Rate (CDR) and Con-
stant False Alarm Rate (CFAR) detectors, where threshold is
set adaptively depending on the SNR regime and the charac-
teristics of the sensed wideband signal. However, it should be
noted that even in adaptive thresholding, presence of interfer-
ence may confuse the energy detector [12].

In CEW domain, it is reasonable to assume relatively
low spectrum utilization - namely, more often than not there
will only be a limited number of actual narrowband signals
(either ”friendly” or ”potentially malicious”) in the scanned
wideband signal at any time instance. For this purpose, it
is sufficient to implement a suboptimal thresholding algo-
rithm, where CFAR or CDR performance is not necessar-
ily achieved. Namely, practical experience has shown that
threshold λ̂ may be adaptively set based only on the mean
value of the magnitudes of the scanned wideband signal, as:

λ̂ = 2 · 1
n ∑ |Y (n)| (2)

This step concludes the energy detection.
Let us assume that as a result of the thresholding process,

N frequency bins are identified. For a system where M actual
signals (N > M) are present, N −M frequency bins would



incorrectly be classified as signals. Then, simple thresholding
would result in the false alarm rate of N−M

N .
For this reason, frequency bins corresponding to the same

signal need to be grouped together. For the ideal case (generic
signals in high-SNR environments), the simplest approach
consists of grouping consecutive samples together and clas-
sifying them as single waveforms. However, in most practical
situations, some frequency bins may have erroneous magni-
tude values as a result of imperfect sampling and would thus
be discarded during the thresholding phase. For this purpose,
maximum acceptable distance (in Hz) between the two sam-
ples belonging to the same waveform is defined, and is a func-
tion of the frequency resolution of the FFT as given by:

dMAX = K ·d f . (3)

Here, K is the estimate of a number of consecutive samples
that could be erroneously disregarded, and d f is the frequency
resolution of the FFT, defined as:

d f =
2 · fmax

NS
, (4)

where fmax is the maximum resolvable frequency (which in
case of Nyquist sampling equals to half of the sampling fre-
quency), and NS is the number of samples acquired during the
sampling process.

Figure 2 illustrates the difference between the original
transmitted signal (2(a)), sensed FFT bins (2(b)), and es-
timated signal after performing thresholding/bin grouping
(2(c)).

Next, the waveform analysis is performed, i.e. for each
of the identified narrowband waveforms, relevant parameters
are extracted. These parameters include waveforms’ respec-
tive center frequencies, bandwidths and maximum values of
their magnitudes. It is assumed that the algorithm has an ac-
cess to a database containing pre-defined parameters of the
”friendly” and/or ”potentially malicious” waveforms in the
system. Then, parameters of the identified waveforms in the
system are compared to the parameters from the database,
eventually resulting in classification of each waveform as ei-
ther ”friendly” or ”potentially malicious”.

The considered method for waveform analysis is compu-
tationally inexpensive, and is suitable for analysis in systems
with low frequency resolution. However, there is a tradeoff
between the lightweight nature of the algorithm and the limi-
tations it imposes, which are as follows:

1. Relatively high probability of misclassification / misde-
tection compared to more advanced waveform analysis
methods in systems with higher frequency resolution,
as a result of a limited number of analyzed parameters.

2. The need for a-priori knowledge of the expected maxi-
mum values of the magnitudes, which in real-life situ-
ations may not always be feasible.
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3. Vulnerability against adversaries able to refine their
transmission-related parameters in order to mimick
”friendly” users (the so-called User Emulation Attack-
ers [13]).

Alternative, computationally more expensive waveform
analysis techniques include cross-correlation in time do-
main; more comprehensive Statistical Signal Characteriza-
tion (SSC) methods [14]; modulation classification methods
[15]; and cyclostationary detectors [5]. These are not ana-
lyzed within this work, however they all impose themselves
as viable future research topics.

Besides waveform identification and classification, the
system also recognizes instantaneous spectrum holes. We
define a spectrum hole as the channel where the magnitudes
of all of the corresponding FFT bins are below the energy
threshold.

The algorithm next accesses the Temporal Frequency
Map, where previous occurrences of spectrum activities are
stored. The Temporal Frequency Map is a n× 3 matrix that
keeps track of the number of occurrences of ”friendly” wave-
forms, ”potentially malicious” waveforms and spectrum holes
for each of the n channels-of-interest, as illustrated in Table
1.

Table 1: Temporal Frequency Map

Spectrum activity/CHANNEL 1 2 ... n 

Friendly mF/1 mF/2  mF/n 
Potentially malicious mPM/1 mPM/2  mPM/n 

Spectrum hole mSH/1 mSH/2  mSH/n 

 

In each cycle, previous values are updated with the newly
acquired and processed information. This corresponds to the
learning phase of the Cognitive cycle. Temporal forgiveness
is implemented within the algorithm, i.e. spectrum activities
corresponding only to the last k spectrum readouts are taken
into account while making future decisions. This reduces the
probability of data becoming obsolote, at the expense of the
lower amount of accessible information.

Finally, based on the processed spectrum information,
current transmission parameters (channel and power) and the
history obtained from the Temporal Frequency Map, the CR
may decide to act in order to improve its chances of reliable
transmission. The actions constitute of proactively changing
the transmission frequency (channel surfing), or the transmis-
sion power whenever a threat has been detected. A system
is considered ”under threat” when a ”potentially malicious”
waveform has been identified on the channel close to the
channel currently used for transmission. The new channel for
the transmission is then chosen according to (5).

ct+1 ∈ (ct = SH | (X(ct) = min). (5)

This means that the new channel ct+1 is selected among
all the channels ct that are currently spectrum holes, such that
the X(ct) is minimum. X(ct) represents the expected channel
reliability, defined as (6).

X(ct) = k2 ·mPM/ct +(k+1) ·mF/ct −mSH/ct , (6)

where mPM/ct , mF/ct and mSH/ct represent the numbers
of occurrences of the ”potentially malicious” waveforms,
”friendly” waveforms and spectrum holes on the channel ct
over the last k steps, respectively. The coefficients k2 and
(k+1) are assigned in order to give highest priority of action
to avoiding channels with history of occurrences of ”poten-
tially malicious” waveforms, followed by the channels with
history of occurrences of ”friendly” waveforms.

The new transmission power is chosen according to (7).

Pt+1 ∈ P | PR > 10log10λ̂ +3dB. (7)

Algorithm 1 provides the pseudocode demonstrating pro-
cesses related to the Spectrum Intelligence algorithm.

Algorithm 1 Spectrum Intelligence pseudocode
1: function SPECTRUM INTELLIGENCE
2: Initialize all channel states to ”free”
3: Sample the wideband signal→ NS amplitudevalues
4: Data parsing→ NS = 2x amplitudevalues
5: Perform FFT→ NS

2 f requencybinswithmagnitudesM
6: Calculate mean value of M→Mmean
7: Based on Mmean, set the energy threshold→ λ̂

8: for i = 1 to nS
2 do (For each frequency bin)

9: if M(i)> λ̂ then
10: Bin i belongs to the signal
11: Change channel state of bin i to ”occupied”
12: if any of M(i−K):M(i−1)> MT then
13: Group these bins as a single waveform
14: end if
15: end if
16: end for
17: Extract parameters of identified waveforms →

bandwidth, center f requency, maximumM
18: Compare parameters to the database →

wave f ormiseither ” f riendly”or ”potentiallymalicious”
19: Update Radio Frequency Map
20: If ”potentially malicious” waveforms are near the cur-

rent operating channel, choose new TX frequency/power
21: end function

3. IMPLEMENTATION ON THE CR TEST BED

The proposed algorithm was implemented on the SDR/CR
coaxial test bed architecture. Compared to the over-the-air



implementation, coaxial test bed exhibits several important
advantages:

• Possibility to set accurate and stable RF levels,

• Repeatability of the experiments without the uncertain-
ties characteristic to wireless transmission,

• Possibility to connect test instruments and generators
to one or more branches,

• Avoiding regulatory issues related to transmitting out-
side of the Industrial, Scientific and Medical (ISM) fre-
quency bands.

Test bed consists of two Software Defined Radio (SDR)
SWAVE HandHeld (HH) terminals [16], each interconnected
with the computationally powerful System-on-Module (SoM)
embodied with a Digital Signal Processor (DSP) and a Field
Programmable Gate Array (FPGA). Inbetween, a dual direc-
tional coupler is placed. Vector signal generator allows for
injecting noise/interference to the system, whereas spectrum
analyzer provides reliable monitoring of the relevant RF ac-
tivities in real-time. Block diagram of the test bed architecture
is provided in Figure 3.

Signal 
Generator

Attenuator Attenuator
Bi-directional 

Coupler
SWAVE 

HH
System-on-

Module

SWAVE 
HH

Spectrum 
Analyzer

Fig. 3: CR test bed block diagram

SWAVE HH is a fully functional SDR terminal operable
in Very High Frequency (VHF) and Ultra High Frequency
(UHF) bands, capable of hosting a multitude of both legacy
and new waveforms. Additionally, it provides support for re-
mote control of its transmit and receive parameters via the
Simple Network Management Protocol (SNMP). All of the
signal processing is delegated to the SoM. Connection be-
tween the HH and SoM is achieved through Ethernet and se-
rial ports. Ethernet is used for the remote control of the HH’s
parameters, using SNMP v3. For the purposes of the Spec-
trum Intelligence algorithm, relevant remotely controllable
parameters are operating channel and transmission power. Se-
rial port is used to transfer raw spectrum data from the HH to
SoM. The interfaces are illustrated in Figure 4, and the ac-
tual implementation in Figure 5. Full details on the test bed
architecture may be found in [17].

Here follows a description of the spectrum sensing pro-
cess based on the HH’s wideband front end architecture (Fig-
ure 6). HH’s 14-bit Analog-to-Digital-Converter (ADC) per-
forms sampling at 250 Msamples/s. Every 3 seconds, a burst

raw spectrum data

SoMHandHeld (SDR)

get TXPower

set TX Power

get RFChannel

set RF Channel

Spectrum occupancyinformation
(serial port)

SNMP parameters (ethernet port)

get Battery status

Fig. 4: Interfaces HandHeld-SoM

Fig. 5: Implementations of HandHeld and SoM

A/D

RF Antenna

Filter Low-noise Amplifier Mixer

Local oscillator

Analog-to-Digital
Converter

Fig. 6: HandHeld’s wideband RF front end architecture



of 8192 consecutive samples is buffered, and then outputted
over the serial port at 115200 bauds to the SoM. There, the
samples, corresponding to 120 MHz around the center car-
rier frequency of the radio, are parsed, transformed into the
frequency domain using the Fast Fourier Transform (FFT),
and subsequently analyzed by the implemented energy de-
tector. Alternatively, in order to increase the frequency res-
olution of the FFT bins, several consecutive spectrum bursts
may be FFT-ed, averaged and analyzed together. The spec-
trum sensing and the Spectrum Intelligence as a whole is a
quite process, i.e. throughout the process, HH is able to trans-
mit/receive data. Controlled environment achieved by the
coaxial implementation allows us to assume high coherence
time of the analyzed frequency band, i.e. while perform-
ing the averaging of consecutive spectrum readouts, temporal
variability of the channel may be disregarded. We acknowl-
edge, however, that in case of the over-the-air transmission,
nature of the wireless medium would not allow us to make
such assumption. In order to obtain higher FFT frequency
resolutions, necessary modifications to the equipment would
include increasing the buffer size on the HH, and finding ways
to transfer spectrum data at higher baud rate than is currently
supported. Alternatively, appropriate techniques that estimate
the temporal variability of the channel would need to be de-
ployed.

The FFT-ed data is then further analyzed by the Spectrum
Intelligence algorithm, as explained in Section 2. The output
of the algorithm is the transmission frequency and transmis-
sion power to be deployed in the next cycle. These values are
written to the .xml file at the end of the Spectrum Intelligence
cycle.

As previously mentioned, HH provides support for recon-
figurability of its transceiving parameters by the means of the
SNMP v3. The implementation is done in the following way:
whenever a new value is written into the .xml file representing
the new transmission frequency/power, the algorithm running
on the SoM intreprets it as the SNMP command that needs
to be invoked. Each SNMP command (SET_RFchannel
or SET_TXpower) is characterized by the corresponding
unique Object IDentifier (OID) and the new value of the pa-
rameter. OIDs and the respective values that each object can
take are stored in the Management Information Base (MIB)
on the HH. Once that the HH receives the SET request, it
accesses the MIB, checks whether the requested value of the
object is defined in MIB and, if so, changes the corresponding
parameter. This finishes one cycle of the Spectrum Intelli-
gence algorithm. Change of the transmission parameters
occurs in every cycle in which the ”under threat” alarm has
been triggered.

4. EXPERIMENTAL VALIDATION

Performance of the overall algorithm depends mainly on the
accuracy of the energy detection and waveform classification

phases. In order to evaluate the performance of these func-
tionalities, a set of experiments is performed using the test
bed architecture.

SelfNET Soldier Broadband Waveform (SBW) [16], rep-
resenting the ”potentially malicious” waveform, is continu-
ously transmitted on the fixed carrier frequency. SBW is a
digital waveform with 1.25 MHz bandwidth, operable in VHF
(30 MHz-88 MHz) and UHF (256 MHz-512 MHz) frequency
bands. When operating in VHF, direct conversion principle
is utilized, and the frequency band scanned is always 0-120
MHz. When operating in UHF, superheterodyne principle is
used, and the frequency band scanned depends on the center
carrier frequency fc of the radio - namely, analyzed band is
[ fc−35, fc+85] MHz. Vector signal generator is used to cre-
ate and inject the ”friendly” waveforms into the channel, em-
ulating friendly communication. In addition, for the ease of
analysis, all other sensed recognized signals that are not clas-
sified as ”potentially malicious” are classified as ”friendly”.
Hence, the database contains only the parameters of the ”po-
tentially malicious waveform” - i.e. its bandwidth and ex-
pected maximum magnitude.

For the experiments, we utilize the VHF transmission
band where the radios are operable, meaning that the spec-
trum sensing is performed for the frequency band of 0-120
MHz. SBW signal representing the ”potentially malicious”
waveform is transmitted at the center carrier frequency of
61 MHz (first 100 spectrum bursts) and 71 MHz (second
100 spectrum bursts), always with the constant transmission
power. These results are then aggregated and analyzed. Be-
sides the SBW signal, a number of other signals from the
environment are successfully sampled, e.g. FM radio trans-
mission in the frequency band of 88-108 MHz. Figure 7(a)
shows an example of the scanned wideband signal for 1 sens-
ing burst (29.3 kHz frequency resolution). Figures 7(b) and
7(c) show the difference in frequency resolution between 1
burst and 5 consecutive averaged bursts (5.86 kHz frequency
resolution).

Ideally, waveform analysis should classify only the SBW
waveform as the ”potentially malicious” waveform in every
analysis cycle (true positives). However, the analysis proce-
dure will occasionally erroneously classify other waveforms
as ”potentially malicious” (false positives).

These classification results are directly dependent on the
following factors:

• Energy detection threshold, λ̂ - inappropriately low
threshold may result in grouping together many ad-
jacent bins (some of which actually corresponding to
noise) as single waveforms, consequently increasing
the estimated bandwidths of these waveforms.

• Estimated number of consecutive samples that could be
erroneously disregarded, K - overly low K may result in
single waveforms being erroneously recognized as dif-
ferent waveforms on adjacent frequencies; overly high
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Fig. 7: Signal: wideband sensed - 1 analyzed burst (a),
zoomed in - 1 analyzed burst (b), zoomed in - 5 analyzed
bursts (c)

K may result in waveforms on adjacent frequencies be-
ing erroneously grouped as single waveforms.

• Similarity in the parameters between the analyzed
waveform and other scanned waveforms present in the
communication system.

• Level of tolerance on the analyzed parameters (e.g.
20% tolerance on bandwidth means that for SBW,
whose bandwidth is 1.35 MHz, all scanned waveforms
whose bandwidth falls between [1.08,1.62] MHz will
be classified as the SBW waveform) - higher toler-
ance will increase the probability of both true and false
positives.

• Frequency resolution, directly stemming from the num-
ber of averaged consecutive bursts.

The first two points are defined according to (2) and (3)
respectively, with K = 3. In the analyzed system, all scanned
signals have significantly narrower bandwidths than the ana-
lyzed (SBW) signal, as can be seen from Figure 7(b). Hence,
we focus our analysis on the influence of the last two points.

First, waveform analysis is performed using only the esti-
mated bandwidths of the scanned waveforms. Level of toler-
ance varies between 10% and 30%, and number of consecu-
tive analyzed bursts varies from 1 to 10. Results are summa-
rized in the form of the confusion matrix in Table 2.

Here, ”true positives” refer to the correctly classified
instances of the ”potentially malicious” (SBW) waveform.
”False positives” are all other (”friendly”) waveforms er-
roneously classified as ”potentially malicious”. Whereas it
could have been foreseen that the rate of true positives in-
creases significantly with frequency resolution (number of
averaged bursts), the rate of increase of false positives may

Table 2: Confusion matrix when only the estimated band-
widths are used

 

   

 Parameter tolerance (%) 

No. of 
bursts 

 10 20 30 

 
1 

True positives (200 runs) 55 92 130 

False negatives (200 runs) 145 108 70 

False positives (200 runs) 0 4 9 

 
3 

True positives (66 runs) 48 59 61 

False negatives (66 runs) 18 7 5 

False positives (66 runs) 14 20 27 

 
5 

True positives (40 runs) 36 40 40 

False negatives (40 runs) 1 0 0 

False positives (40 runs) 20 26 34 

 
10 

True positives (20 runs) 18 20 20 

False negatives (20 runs) 2 0 0 

False positives (20 runs) 16 23 52 

 

 



0 20 40 60 80 100 120
0

2

4

6

8

10

12

14
x 10

5

Frequency (MHz)

M
ag

ni
tu

de
 (

be
fo

re
 n

or
m

al
iz

at
io

n)

 

 
Signal in the frequency
domain (after thresholding)
Energy threshold
Envelopes of the waveforms
identified as "potentially malicious"

Fig. 8: Occurrences of false positives - 10 consecutive ana-
lyzed bursts, parameter tolerance 30%

come as a surprise. Figure 8 proffers a good explanation for
this occurrence:

Here, instances of both the correct detection (waveform at
71 MHz) and of five false detections (waveforms at approxi-
mately 94, 96, 99, 103 and 105 MHz) are present. False de-
tections are caused by several factors: imperfect sampling and
low sampling time throughout analyzed sampling windows
cause that the FFT bins appear at slightly different frequencies
(especially for the narrowband FM radio signals). Some of
these values then superimpose, making their respective mag-
nitudes satisfy the threshold λ̂ . Adjacent (K = 3) frequency
bins that are over the threshold are grouped together and ana-
lyzed as single waveforms. Occasionally, these ”waveforms”
will have estimated bandwidth that falls within the tolerance
of the analyzed (SBW) waveform, in turn triggering the false
detection.

This may partially be solved by imposing higher con-
straint on λ̂ or lower constraints on K. Alternatively, an-
alyzing other waveform parameters (when available) may
provide even better analysis results. In the second step, wave-
form analysis is performed using both the information of
the estimated bandwidth and the maximum magnitude for
the scanned waveforms. Table 3 shows the improvements
with respect to the reduced number of false positives, at the
expense of the reduced number of identified true positives.

We acknowledge that, whereas information on the ad-
versaries’ transmission powers may often not be known a-
priori in real-life scenarios, they might be known for some
”friendly” signal. Then, with the appropriate channel es-
timation techniques and the information on the ”friendly”
waveforms’ geographical positions, expected scanned power
or magnitude may be predicted (with a certain tolerance).

Table 3: Confusion matrix when both the estimated band-
widths and the estimated magnitudes are used 

   

 Parameter tolerance (%) 

No. of 
bursts 

 10 20 30 

 
1 

True positives (200 runs) 32 85 123 

False negatives (200 runs) 168 115 77 

False positives (200 runs) 0 0 0 

 
3 

True positives (66 runs) 35 44 54 

False negatives (66 runs) 31 22 12 

False positives (66 runs) 0 0 0 

 
5 

True positives (40 runs) 34 36 37 

False negatives (40 runs) 6 4 3 

False positives (40 runs) 0 0 0 

 
10 

True positives (20 runs) 17 20 20 

False negatives (20 runs) 3 0 0 

False positives (20 runs) 0 0 0 

 

 

Finally, we measure the execution time of the Spec-
trum Intelligence algorithm for varying numbers of analyzed
bursts. The results are shown in Figure 9.
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Fig. 9: Average execution times of the Spectrum Intelligence
algorithm

Full blue line shows the computational time of the
Process-Analyze-Learn-Decide phase of the Spectrum In-
telligence, corresponding to all the processes that are running
on the SoM. Computational times of the whole cognitive cy-
cle, including the sensing time and the time needed to deploy
the appropriate SNMP command on the radio are represented
by the dashed red line. Sensing time takes approximately 3
seconds per burst, whereas invoking and executing the SNMP
command takes approximately 1.3 seconds. In case of chan-
nel surfing, additional frequency settling time of the HH is



negligible, and corresponds to 40 microseconds.

The performance of the Spectrum Intelligence algorithm
as a whole depends primarily on the jamming tactics deployed
by the adversaries, as well as on the system parameters such
as number of available channels for frequency hopping, and
successful classification of these channels as spectrum holes
depending on the occurrences of ”friendly”/other waveforms
in the system. Against naive narrowband jamming entities
that change their transmission frequency slowly, Spectrum In-
telligence proffers next to a foolproof strategy for jamming
evasion. However, against more advanced opponents that are
able to adapt their tactics as fast as the Spectrum Intelligence
algorithm, the performance is yet to be evaluated.

5. CONCLUSIONS AND FUTURE WORK

In the paper, we have presented the ideas, development and
implementation aspects of the Spectrum Intelligence algo-
rithm for Interference Mitigation. The algorithm is based on
the learning capabilities and the on-the-fly reconfiguration
of the transmission-related parameters characteristic to Cog-
nitive Radio technology. Implementation of the algorithm
was done on the SWAVE HandHeld - a military Software
Defined Radio - interconnected with the computationally
powerful System-on-Module. Performance of several crucial
functionalities of the algorithm was evaluated and presented.
Main identified challenges included: finding optimal algo-
rithm for adaptive energy detection thresholding; optimal set
of features for waveform comparison and classification, and
reasonable execution time.

Future work will involve further work on the optimal
adaptive thresholding, as well as the more advanced wave-
form classification techniques. Testing of all of the imple-
mented functionalities will be done against emulated Cogni-
tive Radio jammers able to deploy advanced jamming tactics.

Acknowledgements

This work was partially developed within the nSHIELD
project (http://www.newshield.eu) co-funded by the ARTEMIS
JOINT UNDERTAKING (Sub-programme SP6) focused on
the research of SPD (Security, Privacy, Dependability) in the
context of Embedded Systems.

The authors would like to thank Selex ES and Sistemi In-
telligenti Integrati Tecnologie (SIIT) for providing the equip-
ment for the test bed, and the laboratory premises for the test
bed assembly. Particular acknowledgments go to Virgilio Es-
posto of Selex ES and to Gabriele Dura of University of Gen-
ova, for providing expertise and technical assistance.

6. REFERENCES

[1] J. Mitola and Jr. Maguire, G.Q., “Cognitive radio: mak-
ing software radios more personal,” Personal Commu-
nications, IEEE, vol. 6, no. 4, pp. 13–18, 1999.

[2] Qing Zhao and B.M. Sadler, “A survey of dynamic spec-
trum access,” Signal Processing Magazine, IEEE, vol.
24, no. 3, pp. 79–89, May 2007.

[3] M. O. Mughal, L. Marcenaro, and C. S. Regazzoni,
“Energy detection in multihop cooperative diversity net-
works: An analytical study,” International Journal of
Distributed Sensor Networks, vol. 2014, 2014.

[4] G. Bartoli, D. Marabissi, R. Fantacci, L. Micciullo,
C. Armani, and R. Merlo, “Performance evaluation
of a spectrum-sensing technique for ldacs and jtids
coexistence in l-band,” in Proceedings of SDR’12 -
WinnComm-Europe, June 2012, pp. 17–23.

[5] A. Tkachenko, D. Cabric, and R.W. Brodersen, “Cy-
clostationary feature detector experiments using recon-
figurable bee2,” in New Frontiers in Dynamic Spectrum
Access Networks, 2007. DySPAN 2007. 2nd IEEE Inter-
national Symposium on, April 2007, pp. 216–219.

[6] S. Kapoor, S.V.R.K. Rao, and G. Singh, “Opportunistic
spectrum sensing by employing matched filter in cog-
nitive radio network,” in Communication Systems and
Network Technologies (CSNT), 2011 International Con-
ference on, June 2011, pp. 580–583.

[7] R. Poisel, Introduction to Communication Electronic
Warfare Systems, Artech House, Inc., Norwood, MA,
USA, 2 edition, 2008.

[8] F. Delaveau, A. Evesti, J. Suomalainen, and N. Shapira,
“Active and passive eavesdropper threats within pub-
lic and private civilian wireless-networks - existing and
potential future countermeasures - a brief overview,”
in Proceedings of SDR’13 -WinnComm-Europe, June
2013, pp. 11–20.

[9] K. Dabcevic, A. Betancourt, C.S. Regazzoni, and
L. Marcenaro, “A fictitious play-based game-theoretical
approach to alleviating jamming attacks for cognitive
radios,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2014 IEEE International Conference on,
2014, pp. 8208–8212.

[10] H.B. Yilmaz, T. Tugcu, F. Alagoz, and S. Bayhan, “Ra-
dio environment map as enabler for practical cognitive
radio networks,” Communications Magazine, IEEE, vol.
51, no. 12, pp. 162–169, December 2013.



[11] F. F. Digham, M.-S. Alouini, and M. K. Simon, “On the
energy detection of unknown signals over fading chan-
nels,” IEEE Trans. on Commun., vol. 55, no. 1, pp. 21–
25, 2007.

[12] D. Cabric, S.M. Mishra, and R.W. Brodersen, “Imple-
mentation issues in spectrum sensing for cognitive ra-
dios,” in Signals, Systems and Computers, 2004. Con-
ference Record of the Thirty-Eighth Asilomar Confer-
ence on, Nov 2004, vol. 1, pp. 772–776 Vol.1.

[13] N.T. Nguyen, Rong Zheng, and Zhu Han, “On identi-
fying primary user emulation attacks in cognitive radio
systems using nonparametric bayesian classification,”
Signal Processing, IEEE Transactions on, vol. 60, no.
3, pp. 1432–1445, 2012.

[14] H.L. Hirsch, “Statistical signal characterization - new
help for real-time processing,” in Aerospace and Elec-
tronics Conference, 1992. NAECON 1992., Proceedings
of the IEEE 1992 National, May 1992, pp. 121–127
vol.1.

[15] W. M. Meleis, Signal detection and digital modulation
classification-based spectrum sensing for cognitive ra-
dio, Ph.D. thesis, Northeastern University, Boston, Mas-
sachusetts, 2013.

[16] SelexES, “Swave hh specifications,” 2013.

[17] K. Dabcevic, L. Marcenaro, and C. S. Regazzoni, “Spd-
driven smart transmission layer based on a software de-
fined radio test bed architecture,” in Proceedings of the
4th International Conference on Pervasive and Embed-
ded Computing and Communication Systems, 2014, pp.
219–230.


