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Abstract—This paper proposes a new algorithm for jammer
detection in wide-band (WB) cognitive radio networks. We
consider a WB which comprises of multiple fixed length narrow-
band sub-bands (SB). These SBs are occupied by narrow-band
signals which can be legitimate users or a jammer. To reduce the
overhead of the analog-to-digital conversion (ADC), compressed
sensing (CS) is performed first. CS allows us to estimate a WB
spectrum with sub-Nyquist rate sampling. After that, energy
detection is applied to identify the occupied sub-bands (SB).
Then, for each occupied SB, some waveform parameters such
as signal bandwidth and power spectral density (PSD) levels
are compared with licit user database to classify the observed
signal as a licit user or a jammer. In the end, performance of
the proposed algorithm is shown with the help of monte carlo
simulations under different empirical setups.

I. Introduction

Federal Communications Commission (FCC) of the U.S.

reported in [1] that some spectrum bands are largely under-

utilized in particular geographic locations at particular times.

This opened up new field of play for the wireless communi-

cation researchers to exploit these un-used licensed frequency

bands for utilization by the unlicensed users. As a conse-

quence, cognitive radios [2], [3] attained much popularity

over the last decade. Cognitive radio is a technology that

allows these unlicensed users to access the spectrum when

licensed users are idle. Thus, cognitive radio has emerged as

the enabling technology for Dynamic / Opportunistic spectrum

access (DSA / OSA). In order for a cognitive radio to work, it

must attain some information of its surrounding environment.

This spectrum awareness comes from either radio frequency

maps [4] or spectrum sensing.

There are several methods for spectrum sensing such as en-

ergy detection, cyclo-stationary detection or matched filtering

[5]. Among these, despite its poor performance at low signal-

to-noise ratios (SNR), energy detector is a popular choice due

to its low implementation complexity. Of late, researchers have

shown a good deal of interest in the study of energy detectors

in both narrow-band [6]–[8] and wide-band (WB) regimes [9]–

[11]. Specifically, the task of spectrum sensing becomes much

more challenging for WB radios due to the requirement of high

(at or above Nyquist) sampling rates. Because of this, high

rate analog-to-digital converters (ADC) are required which

increases the cost of the cognitive radio.

To alleviate the requirements of such high sampling rates,

compressed sensing (CS) [12] has clutched some serious

attention from the signal processing community over the past

few years. According to the theory of CS, a sparse signal

can be recovered from random samples taken at sub-Nyquist

rate. Signal sparsity is the fundamental requirement for CS

to work and in the context of cognitive radio networks, it is

a practical assumption because not all frequency bands are

occupied all the time in all geographical locations [1], [9].

Hence spectrum of the cognitive radio network is sparse in

frequency domain due to low occupancy by the licensed users.

Signal estimation using CS requires non-linear optimization to

find the sparsest solution. This could be achieved by means

of greedy algorithms such as Matching Pursuit (MP) [13] or

Orthogonal MP [14]. The other solution is the use of Convex

Programming as in Basis Pursuit (BP) algorithm [15].

Radio frequency (RF) jamming refers to the process of

illicit RF transmission on one or more RF channels with the

goal of disrupting the communication of the targeted system.

Whereas RF jamming and anti-jamming are concepts almost

as old as the wireless communication itself, recent advances

in Cognitive Radio technology enable devising and deploying

advanced, self-reconfigurable jamming [16] and anti-jamming

solutions [17]. An anti-jamming system based on the Cognitive

Radio technology may use the spectrum sensing information to

detect potential jamming entities, and take proactive measures

to ensure communication continuity and security. Furthermore,

it may collect a history of the observations, and use it to

devise anti-jamming tactics with even higher probability of

success. For example, in case of a frequency hopping spread

spectrum (FHSS) system, the Cognitive Radio may modify its

hopping pattern to avoid the channels frequently occupied by

the potential jamming entities [18]. In order to do so, a reliable

jammer detection algorithm needs to be implemented.

This work introduces a CS based algorithm for jammer

detection in WB spectrum. Spectrum is considered to be

occupied by various narrow-band signals which can be clas-

sified either as legitimate signals or jammer signals. Each

narrow-band signal can occupy a fixed length sub-band (SB)

within the WB spectrum. The first step of the algorithm

is the estimation of WB spectrum with CS technique to

cope with high rate sampling. For the demonstration purpose,

we choose to implement a conventional CS approach, i.e.,

BP. To find the sparsest solution, BP requires to solve the

complex optimization problem for an under-determined system

of equations. The Primal-Dual (PD) interior-point method
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Fig. 1: (a) Wide-band spectrum divided into multiple sub-

bands (SB) and each SB is occupied by a narrow-band signal.

(b) Narrow-band jammer (Tone) jumps to the neighbouring

SB to jam licit (BPSK) signal.

solves this convex optimization by using the classical Newton

Method. After that, conventional energy detection is used to

identify each SB either as idle or busy. Then, for each occupied

SB, estimated waveform parameters such as its power spectral

density (PSD) level and bandwidth, are compared with the

parameters of the considered licit waveforms which are stored

in a database. Based on this comparison, each of the detected

signals is classified either as a licit waveform or a jammer.

Finally, performance of the proposed algorithm is evaluated

with the help of monte carlo simulations. To the best of our

knowledge, this kind of jammer detection algorithm has not

been introduced so far in the open literature.

The rest of the paper is organized as follows. Section II

describes the system model and problem formulation. Section

III outlines CS preliminaries and proposed algorithm. Exper-

imental results are discussed in section IV. Finally, the paper

is concluded in Section V along with some future directions.

II. SystemModel and Problem Formulation

Suppose that a ∆ Hz of frequency spectrum in the frequency

range {0, fmax} is under observation for a WB communication

network. This WB is divided into multiple, equal length SBs.

Each of these SBs can be occupied by different narrow-band

signals such as, tone (sine or cosine), binary phase shift keying

(BPSK) signal, binary frequency shift keying (BFSK) signal,

or any other narrow-band signal, as shown in Fig. 1(a). We

consider that the narrow-band signals are confined within

their respective SBs and there is no spill-over energy into the

neighbouring SBs. Each of these received narrow-band signals

experience multi-path Rayleigh fading due to the nature of

the wireless channel. Furthermore, signals are effected by the

additive white gaussian noise (AWGN) at the receiver.

For our system, we consider a single tone jamming signal.

Tone jamming typically has high success rates against narrow-

band signals, and may often be the best strategy for jammers

with limited transmission power, as single tone jamming

allows to concentrate all of the power on a single data channel.

Let us assume that the targeted signal is BPSK-modulated and

uncoded, and that the targeted receiver implements coherent

detection. Then, the bit error probability Pe with single tone

jamming present on the data channel of the targeted signal can

be calculated as [19]:

Pe = Q
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where PJ is the received power of the jamming signal, θPJ

is the phase of the jamming signal, PR is the received power

of the targeted signal, σN is the thermal noise power, and

Q represents the Q-function. For simplicity of analysis, we

assume that PJ >> PR, resulting in Pe ≈ 100% whenever

the jammer transmits on the same channel as the targeted

transmitter-receiver pair. Furthermore, we disregard the effects

of the jamming signal when it is placed on the channel

complementary to the one used by the transmitter-receiver pair.

III. CS and Proposed Algorithm

In this section, we explain the preliminaries of CS as in

[9], [11] and present our proposed algorithm. The observed

time-domain WB signal can be expressed as,

r(t) = h(t)∗ s(t)+w(t) (2)

where h(t) is the channel coefficient between transmitter and

receiver, s(t) denotes the transmitted signal, ∗ denotes the

convolution operation and w(t) is the AWGN with zero mean

and power spectral density σ2
w.

For observing the frequency response of the received signal,

an N-point discrete fourier transform (DFT) is taken on r(t)

to collect the frequency-domain samples into an N ×1 vector

r f , as follows:

r f = Dhs f +w f (3)

where Dh = diag(h f ) is an N×N diagonal channel matrix, and

h f , s f and w f are the discrete frequency-domain samples of

h(t), s(t) and w(t), respectively. In general form, this signal

model can be expressed as,

r f =H f s f +w f (4)

From the above expression, we can observe that the spectrum

sensing task requires to estimate s f in (4) provided we have H f

and r(t). Because we have a WB signal at our disposal, we can

take advantage of the CS theory to relieve high sampling rate

(Nyquist rate) ADC requirements. Various computationally

feasible algorithms, such as, BP [15] or OMP [14], were

developed to reliabaly estimate the received signal sampled

at sub-Nyquist rate sampling.



We start by collecting the compressed time-domain samples

at the receiver. For this, a compressed sensing matrix Sc is

constructed to collect a K × 1 sample vector xt from r(t) as

follows:

xt = Scrt (5)

where rt is the N × 1 vector of discrete-time representations

of r(t) at the Nyquist rate with K ≤ N, and Sc is the K ×N

projection matrix. There are various designs introduced in lit-

erature for compressive sampler such as non-uniform sampler

[20] and random sampler [21], [22].

Noting that rt = F−1
M

r f , and given K compressed measure-

ments, the frequency response s f can now be estimated in (4),

as follows:

xt = ST
c F−1

M H f s f + w̃ f (6)

where w̃ f = ST
c F−1

M
w f is the noise sample vector which is white

gaussian. In the context of CR networks, i.e., low spectrum

occupancy by the licensed users, the signal vector s f is sparse

in frequency domain. The sparsity is measured by p-norm

||s f ||p, p ∈ [0,2), where p = 0 indicates exact sparsity.

Thus, equation (6) is a linear regression problem with signal

s f being sparse. This signal s f can be reconstructed by solving

the following linear convex optimization problem:

ŝ f = argmin
s f

||s f ||1, s.t. xt = ST
c F−1

M H f s f (7)

There are different methods to solve this optimization problem,

for example, by means of Convex Programming as in BP [15]

method or by usage of Greedy Algorithms such as MP [13]

or OMP [14].

Having the estimated PSD ŝ f of the wide-band spectrum, we

need to find the presence or absence of a transmission signal in

a certain SB. This decision can be simply taken by the use of

energy detector using the estimated frequency response over

that SB. Hence the test statistic will be

Ti =

iM
∑

m=(i−1)M+1

ŝ f (m) i = 1,2, ..., I (8)

where i is the SB index, M is the PSD samples in each SB

and m is the frequency carrier index. The PSD estimate can

be expressed as

ŝ f (m) =
1

M

M
∑

m=1

|r f (m)|2 (9)

and the decision rule is given by

Ti ≷
H1

H0
λ, i = 1,2, ..., I (10)

where H0 and H1 denote a transmit signal being absent or

present, respectively and λ is the decision threshold.

After the energy detection decision process, the waveform

analyses are performed for each occupied SB. Because of

CS, we already have the bandwidths (due to fixed slicing

of the WB) and estimated PSD in each SB. We assume that

the algorithm has access to a database containing pre-defined

parameters of the “legitimate” and / or “jammer” waveforms.

Algorithm 1 Pseudo-code for proposed algorithm

1: function Jammer Detector

2: Initialize all SB states to ”free”

3: Set compression rate ← K/N

4: Sample the WB using random sampling

5: Construct the measurement matrix ← S c

6: Estimate the WB from compressed samples using BP

7: Divide estimated WB into i SBs

8: for i = 1 to I, do

9: Compute test statistic (Ti)

10: Compute threshold (λ) based on desired P f

11: Compare λ with Ti

12: Decision ← H0 or H1

13: end for

14: if H1 then

15: Access the database

16: Compare parameters (bandwidth, estimated PSD)

with the database waveforms

17: Decision ← Licit or Jammer

18: end if

19: end function

Now, the parameters of the waveforms from occupied SBs are

compared with the parameters from the database, eventually

identifying each signal as either licit or jammer. The pseudo-

code of the proposed algorithm is outlined in Algorithm 1.

The considered method is computationally inexpensive but

poses some limitations, such as;

(1) High mis-detection rate due to simple energy detection or

poor estimation at low compression ratios; and

(2) Relatively high rate of wrong identification compared to

more advanced waveform analysis methods.

Alternatively, more complex detectors which achieve better

performance such as cyclo-stationary detectors or matched

filters could be used to minimize mis-detection rate. Fur-

thermore, computationally more expensive waveform analysis

techniques like cross-correlation in time domain or statistical

signal characterization (SSC) methods [23] could be used.

These techniques are not used in this work however they all

impose themselves as viable future research topics.

IV. Experimental Results and Discussion

We consider a WB spectrum of 500 ∆Hz under observation.

This WB is divided into 5 SBs of equal bandwidth. Each

of this SB can either be free or occupied by a narrow-band

signal. For our experiments, we consider a BPSK signal to be a

legitimate signal and cosine wave to be a jammer signal. The

received signals are considered to be effected by multi-path

Rayleigh fading and AWGN.

As explained in previous section, there are various method

for estimation and reconstruction with CS such as BP, OMP

or MP. For this study, we use the BP algorithm for estimation

in the CS part. The proposed jammer detection algorithm is

evaluated at varying compression ratios between 0.25 and 1.0.

The detection threshold λ is computed by fixing the false
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Fig. 2: Performance of Jammer Detection Algorithm at P f =

0.01,S NR = 5dB and various compression ratios. SB-1 and

SB-4 are occupied by legitimate signal and SB-3 is occupied

by jammer.

alarm rate P f = 0.01. It is well known that energy detector

performance degrades at low SNR values. Therefore, we set

SNR level at a moderate level of 5dB to minimize mis-

detection rate. Monte-carlo simulations were run for 1000

iterations.

We configure our system such that we placed the BPSK

signals in SB-1 and SB-4 while jammer signal was placed in

SB-3. In Fig. (2), is plotted compression ratio versus jammer

detection rate for this configuration. It can be seen that jammer

detection rate in SB-3 is around 0.9 at high compression

ratios. It is because of good estimation and reconstruction, mis-

detection rate (SB-3 identified as un-occupied) of the energy

detector was low, specifically, 0.1 at K/N = 1.0. On the other

hand, jammer detection rate drops to 0.8 at K/N = 0.25 while

mis-detection was 0.15 and wrong identification of jammer

as legitimate signal was 0.05. Likewise, jammer detection

rate falls to 0.33 at K/N = 1.0 for SB-1 and SB-4 which

is logical because both these SBs have legitimate signals.

The correct identification of SB-1 and SB-4 was 0.56 while

mis-detection rate was again 0.1 at 100% compression. The

wrong identification of legitimate signal as jammer increases

with decreasing compression ratios due to poor estimation

and reconstruction. Hence at K/N = 0.25, mis-detection was

0.21 while correct identification falls to 0.09 while jammer

detection rate increases to 0.7 as can been in Fig. (2).

Now we configure our system such that SB-1 is occupied by

BPSK signal while jammer jumps into SB-4 thus jamming the

SB-4 which is occupied by BPSK signal. For this configuration

we plot the jammer detection rate versus compression ratio

in Fig. (3). As can be observed, the jammer detection rate

in SB-1 is same as before while that in SB-4 is dropped by

approximately 0.1 magnitude. This is because there is BPSK
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Fig. 3: Performance of Jammer Detection Algorithm at P f =

0.01,S NR = 5dB and various compression ratios. SB-1 is

occupied by legitimate signal and SB-4 has both legitimate

signal and jammer.

signal present in SB-4 as well as Jamming signal and algorithm

is identifying legitimate signal too. Specifically, at K/N = 1.0,

jammer detection rate is 0.78 while legitimate detection rate

is 0.17 and 0.05 is mis-detection. On the other hand, when

K/N = 0.25, jammer detection rate drops to 0.72 while licit

detection rate is same at 0.17 and 0.11 is the mis-detection

rate. Increase in mis-detection at low K/N is once again due

to poor estimation. We have a performance degradation when

both legitimate and jammer signals are present in same SB.

However, performance can be further improved by using a

more complex detector, such as a feature detector or matched

filter. Through these detectors, more parameters of the in-

coming signals can be extracted such as carrier frequencies,

modulation scheme or channel encoding. These parameters

can then be used for rigorous comparisons with the licit

signals parameters to differentiate between a legitimate user

and a jammer. But these methods impose extra computation

costs and time on the system to achieve better performance.

Therefore, it is imperative to find a balance between the

required performance and complexity of the system.

V. Conclusion and FutureWork

In this paper, a CS based jammer detection algorithm

was presented for WB cognitive radio networks. The WB

was considered to be comprised of several narrow-band SBs

of equal bandwidths. To relieve ADC complexity, CS was

employed in the first phase for estimating and reconstructing

the WB spectrum. After that, estimated parameters from CS

were compared with the parameters of the licit waveforms’

database to identify jamming waveforms in each SB. In the

end, results were evaluated for various compression rates and

different occupancy states of the WB spectrum with the help

of monte carlo simulations.



The proposed algorithm appears to perform well within the

limitations imposed by energy detection and by comparison of

only estimated bandwidth and PSD. However, higher perfor-

mance can be achieved by implementing more sophisticated

detector such as cyclo-stationary detector or matched filter.

Performance enhancement may also be possible by using more

expensive and elegant waveform parameters comparison like

SSC methods or cross-correlation in time domain analyses. All

these methods impose themselves as capable and interesting

future research topics.

Acknowledgements

This work was developed within nSHIELD project

(http://www.newshield.eu) co-funded by the ARTEMIS JOINT

UNDERTAKING (Sub-programme SP6) focused on the re-

search of SPD (Security, Privacy, Dependability) in the context

of Embedded Systems.

References

[1] Spectrum policy task force. Rep. ET Docket 02-135, Federal Commu-
nications Commission, Nov. 2002.

[2] J. Mitola and G. Q. Maguire Jr. Cognitive radio: Making software radios
more personal. IEEE Personal Commun., 6(4):13–18, Aug. 1999.

[3] S. Haykin. Cognitive radio: Brain-empowered wireless communication.
IEEE Journal on Selected Areas in Communications, 23(2):201–220,
Feb. 2005.

[4] H. B. Yilmaz, T. Tugcu, F. Alagöz, and S. Bayhan. Radio environment
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