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Wire)



Preface

If you download any one among the many scientific papers related to Cog-

nitive Radios, chances are they are going to mention “Dynamic Spectrum

Access” or “cross-compatibility and interoperability” as the motivating

factors for the research of the Cognitive Radio technology. For me, though,

the motivating reason for deciding to dedicate no less than three years of

my life to researching this topic is somewhat more banal: Cognitive Radio

is simply cool! A radio system that re-configures, adapts, and ultimately

learns on its own? Well, sign me in!

I have first come to learn about this exciting novel communication paradigm

somewhat accidentally, while researching potential topics for my final-year

M.Sc. project. With the aid of my mentor-at-the-time, prof. Mislav Grgić

of the University of Zagreb, I have gained plenty of interesting insights

into the topic. This was followed by a wonderful five-month spell as a

visiting researcher with the Mälardalen University’s Wireless Communi-

cations group, where I have gained invaluable hands-on experience with

off-the-shelf Software Defined Radio platforms. Ultimately, it was this

introduction to the world of the academic research that has shaped my

desire to do a PhD on this particular topic. Hence, I didn’t hesitate to

jump at the opportunity to apply for a position as the PhD candidate in

Cognitive Radio research at the University of Genoa. And so, three years

later – years comprised of sometimes tiring, occasionally frustrating but

for the biggest part truly great and exciting moments - here I am, trying

to summarize everything important I have done throughout my PhD, in

one meaningful, well-structured document.

I would like to provide a clarification as to why, throughout this thesis,

I am occasionally switching between writing in first person singular (“I”)

and first person plural (“we”). The reason is as follows: the former is

typically used to express my own personal beliefs and opinions on the

matters in question. These are a result of three years of research on the



topic, meeting and talking with the peers and experts in the field, and

in general observing the way that the Cognitive Radio technology has

progressed. The latter, conversely, is used whenever actions and inflections

denote collaborative effort between me and my colleagues – Alejandro

Betancourt, Ozair Mughal, Lucio Marcenaro and Carlo Regazzoni. Since

much of my work has relied on collaboration and cooperation, “we” has

established itself as a predominant form in the thesis.

I would like to dedicate a few lines to giving thanks to important people

in my life, starting with my family – to my parents Branimir and Milena,

and my brother Zvonimir – thank you for providing me with support and

encouragement throughout my life.

My gratitude extends to all the great friends I am lucky to have: Šime,

Ante, Filip, Marinko, Grof, Danijel, Nikolina, Bruno, Nataša, Albert,

Jorge, Isah, Alex, Mohamed, Alejandro, Francesca, Camilla, Bo and oth-

ers - even though thousands of kilometers may separate us at any point

in the future, let us keep contact and not forget why we have come to be

friends in the first place! And let us not forget about all the cheap airlines

out there...

Thank you to all of the present and former fellow researchers and the

supporting staff at the ISIP40 group, for building a pleasant and healthy

working environment, and for making me come to the office every morning

with a smile on my face.

My special thanks goes to my wonderful girlfriend and life companion

Maira, who has been by my side throughout, making me a happy and

fulfilled person, day-in, day-out. Going through life with you has been

nothing short of amazing.

Finally, I would like to thank you, dear reader, for taking the time to go

through this document. I hope that you can find something of interest on

the following pages.
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Abstract

Cognitive Radio can be defined as a radio that is aware of its surround-

ings and adapts intelligently. While being cited mainly as an enabler for

solving spectrum scarcity problems by the means of Dynamic Spectrum

Access (DSA), perspectives and potential applications of Cognitive Radio

technology far surpass the DSA alone. For example, cognitive capabili-

ties and on-the-fly reconfiguration abilities of Cognitive Radios constitute

an important next step in the communications electronic warfare. They

may provide the jamming entities with abilities of devising and deploying

advanced jamming tactics. Similarly, they may also aid development of

advanced intelligent self-reconfigurable systems for jamming mitigation.

This thesis studies the impacts of Cognitive Radio technology on tactical

battlefield solutions. A Software Defined Radio/Cognitive Radio test bed

architecture was implemented in order to study principles and practice

related to Radio Frequency (RF) jamming and anti-jamming problems.

In addition, the test bed is used for developing and testing of the novel

algorithms and solutions proposed within this thesis. The central part of

the thesis is the proposed Spectrum Intelligence for Interference Mitigation

algorithm, which performs real-time monitoring, analysis and online learn-

ing of relevant Radio Frequency spectrum activities, and takes proactive

measures to improve communication robustness and continuity. Finally,

the thesis proposes a game-theoretical framework for analyzing intelligent

jamming and anti-jamming behaviour between Cognitive Radio systems.
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Chapter 1

Introduction

1.1 Motivation and objectives

Majority of the components comprising the legacy radio systems are defined in hard-

ware, making the systems inflexible and, oftentimes, mutually noninteroperable. This

has motivated the research of Software Defined Radios, which introduce programmable

processors and highly modular software components into the system architecture.

Cognitive Radios further embody Software Defined Radios with self-awareness and

Radio Frequency (RF)-awareness potentials, as well as the abilities to reconfigure

their operating parameters automatically.

Cognitive Radio has so far been given particular attention from the research com-

munity as an enabling technology for Opportunistic Spectrum Access. The focus of

the work presented in this thesis, however, follows a different line – we study the

potential impacts of Cognitive Radio technology to the communications electronic

warfare domain. Namely, the work presented within this thesis addresses the follow-

ing question: “how can a Cognitive Radio be utilized to devise and deploy jamming

or anti-jamming tactics with higher probabilities of success by observing the patterns

and anomalous occurrences in the RF spectrum and autonomously acting upon these

observations?”. The desired outcome of the undertaken research is to create an im-

pact on future tactical battlefield solutions. For ensuring that our work reaches our

target audience, a close collaboration with Selex ES – a leading Italian provider of

military radio solutions – was established and maintained throughout.

1.2 Research contributions

The main contributions of the thesis are summarized as follows:

1



• A comprehensive overview of the main security issues related to Cognitive Ra-

dios and Cognitive Radio Networks is given.

• Technical details of the assembled Software Defined Radio/Cognitive Radio test

bed architecture used for algorithm development, testing and validation are

presented.

• An intelligent anti-jamming algorithm for Cognitive Radios called Spectrum In-

telligence for Interference Mitigation is proposed, and the corresponding details

of its implementation on the assembled test bed architecture are presented.

• A game-theoretical model for analyzing jamming/anti-jamming behaviour be-

tween Cognitive Radio systems is proposed. The parameters for the model are

obtained using the assembled test bed architecture.

1.3 Thesis outline

The thesis is comprised of eight chapters that are based on a number of peer-reviewed

journals, conference and workshop papers, and a book chapter. Each chapter is

intended to serve as a stand-alone technical textbook, and re-introduces all relevant

concepts needed to gain a comprehensive insight into the topics it discusses, along

with the corresponding bibliography. The exceptions are several cross-references to

Chapter 4, which describes the test bed architecture used for testing and validation

of the algorithms presented in Chapters 5–7.

The thesis is organized as follows:

Chapter 2 gives background on the Cognitive Radio technology, introducing basic

concepts, interesting research topics, and common use cases. In addition, it provides

my own outlook on where Cognitive Radio technology currently is, and where it is

heading. In great way, this outlook was shaped by my conversations and attended

seminars with some of the pioneers and the leading minds of the Cognitive Radio

research and development – names such as Joseph Mitola, James Neel and Pramod

Varshney, among others. Finally, the chapter provides an overview of the state-of-

the-art literature related to intelligent jamming and anti-jamming systems that utilize

Cognitive Radio technology. These may be categorized as theoretical, experimental,

and game-theoretical advances in the field.

Chapter 3 provides a comprehensive overview of the major security issues related

to Cognitive Radios and Cognitive Radio Networks. In addition, security issues that

Cognitive Radios inherit from Software Defined Radios as well as from legacy radio

2



systems are discussed. Besides the state-of-the-art review of the most relevant security

issues, the chapter proposes a simple location-based method for identifying Primary

User Emulation attackers.

Chapter 4 describes the Software Defined Radio/Cognitive Radio test bed archi-

tecture that was assembled with the goal of porting and testing of all of the relevant

developed algorithms. Because of the high number of abstractions introduced by even

the most complex and accurate simulation environments, assembling a real-life test

bed was paramount for performing a meaningful study of jamming and anti-jamming

behaviour. The algorithms and use cases demonstrated using the assembled architec-

ture represent a good example of how Software Defined Radios may be embodied with

self-awareness and self-reconfigurability capabilities, thus ultimately evolving towards

Cognitive Radios.

Chapter 5 discusses traditional RF jamming and anti-jamming concepts and tech-

niques, i.e., those relying on legacy radio systems for achieving their respective goals.

Even though RF jamming is a concept almost as old as the wireless communication

itself, the problems related to both the jamming and anti-jamming systems remain

far from solved, as the “arms race” between the two continues to be ever-evolving.

In order to understand how Software Defined Radios and Cognitive Radios may be

used to successfully impact the domain of the jamming and anti-jamming systems,

it is mandatory to understand the underlying principles and practice of traditional

RF jamming and anti-jamming solutions. In addition, the chapter presents experi-

mental results of jamming efficiencies of various interfering signals on the wideband

QPSK-modulated waveform under different jamming-to-signal regimes.

Chapter 6 is the central part of the thesis, focused on explaining the “cognitive”

part of the Cognitive Radio jamming/anti-jamming systems. Particular attention is

given to the conceptualization and the implementation of the Spectrum Intelligence

for Interference Mitigation – an intelligent anti-jamming system that deploys several

Cognitive Radio functionalities, such as energy detection spectrum sensing, feature de-

tection and waveform classification, and self-reconfiguration and self-awareness. The

chapter places focus on giving practical solutions to overcome issues and constraints

involved with the successful design and deployment of the proposed system.

Chapter 7 analyzes the intelligent jamming/anti-jamming systems from a game-

theoretical perspective. Game theory was shown to be an excellent tool for the math-

ematical formalization of the jamming/anti-jamming events. Main contributions of

the chapter with respect to the state-of-the-art include analysis of the role of spec-

trum sensing mechanisms in deploying advanced jamming/anti-jamming tactics, and

3



bridging the gaps between the game theory and practical systems by using the imple-

mented test bed architecture to infer all the parameters necessary for the meaningful

game-theoretical analysis.

Chapter 8 concludes the thesis, wrapping up the most important concepts, high-

lighting major findings, and proposing possible future extensions.
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Chapter 2

Background and related work

This chapter introduces the concepts associated with Cognitive Radio and Software

Defined Radio technologies, discussing their advances since early days up to present.

It also presents the most interesting applications associated with Cognitive Radio

systems, as well as the underlying enabling technologies. Finally, review of the state

of the art advances in the field of Cognitive Radio jamming and anti-jamming is

presented.

2.1 Cognitive radio technology – preliminaries

Over the past decade, Cognitive Radio has emerged as a “hot topic” in the telecom-

munications industry and research. However, there is no unanimous definition of

what Cognitive Radio technology precisely constitutes. Thus, it is useful to intro-

duce Cognitive Radio by summarizing definitions of some of the visionaries and the

leading authorities in the fields of the Cognitive Radio research, development and

regularization:

• Joseph Mitola [22]:

“A really smart radio that would be self-, RF- and user-aware, and that would

include language technology and machine vision along with a lot of high-fidelity

knowledge of the radio environment.”

• Simon Haykin [17]:

“A radio capable of being aware of its surroundings, learning, and adaptively

changing its operating parameters in real-time with the objective of providing

reliable anytime, anywhere, and spectrally efficient communication.”
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• The Institute of Electrical & Electronic Engineers (IEEE):

“A radio frequency transmitter/receiver that is designed to intelligently detect

whether a particular segment of the radio spectrum is currently in use, and

to jump into (and out of, as necessary) the temporarily-unused spectrum very

rapidly, without interfering with the transmissions of other authorized users.”

• ITU’s Radiocommunication Study Group [19]:

“A radio or system that senses, and is aware of, its operational environment

and can dynamically and autonomously adjust its radio operating parameters

accordingly.”

Clearly, the definitions somewhat vary – occasionally it is only a matter of semantics,

whereas sometimes the definition is pertinent to a specific application of the Cognitive

Radio technology. However, two common underlying features are present in all of the

definitions: intelligence and self-adaptivity of the operational parameters. Our defi-

nition of Cognitive Radio follows the same path: the work presented in this thesis is

focused precisely on exploring how the combination of self-adaptivity and intelligence

– as two vital characteristics of Cognitive Radio systems – may be applied to devise

and deploy jamming and anti-jamming systems with higher probability of success.

Cognitive Radios by and large utilize Software Defined Radios (SDRs) as underly-

ing platforms, further embodying them with machine learning mechanisms, and also

potentially equipping them with smart antennas, geolocation capabilities, biometrical

identification, etc. Because of this strong connection between the two communication

paradigms, SDR technology warrants a brief introduction.

Just like Cognitive Radio, SDR is not a standardized technology. For this reason,

there is no stringent definition on what criteria a radio has to satisfy in order to

be considered “software defined”. One of the most adopted, and in the same time

very intuitive ones is the definition offered by the Wireless Innovation Forum, which

recognizes SDR as “a radio in which some or all of the physical layer functions are

software defined” [12].

An “ideal” SDR would have all the radio-frequency bands and modes defined in

software, meaning it would consist only of an antenna, Digital-to-Analog Converter

(DAC) and/or Analog-to-Digital Converter (ADC), and a programmable processor.

However, in practical systems, a Radio Frequency (RF) front-end has to be imple-

mented as well in order to support the receive/transmission mode. Typically, an

RF front-end of an SDR consists of antenna circuitry, amplifiers, filters, local os-

cillators, and ADCs/DACs. The processing is done by the deployed computational
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resources: most commonly General Purpose Processors (GPPs), Digital Signal Pro-

cessors (DSPs) and Field Programmable Gate Arrays (FPGAs), or a combination of

the aforementioned [9]. A typical hardware architecture of a modern SDR transceiver

is shown in Figure 2.1.

Figure 2.1: Basic hardware architecture of a modern SDR

However, perhaps even more than by the abstraction of their hardware compo-

nents, SDRs are represented by the modular and reusable manner of developing the

corresponding firmware, software and waveforms. Indeed, a standardized manner of

introducing new waveforms to the platform and compatibility with other platform

implementations is usually at the heart of any SDR design.

2.1.1 From legacy radio systems to Cognitive Radios

Shifting from legacy hardware-based systems to software defined architectures and,

eventually, their embodiment with self-adaptivity and machine learning capabilities,

is a gradual process that started in the early 1990s. Whereas SDR and Cognitive

Radio paradigms were initially of interest primarily to the military, over the past

years they have started to attract significantly more interest from the industry and

academia as well. Figure 2.2 illustrates some of the most important milestones in

Cognitive Radio development.

Arguably the first system that started deploying some of the functionalities of

what will later become known as the SDR paradigm, was the Integrated Communica-
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Figure 2.2: Timeline of Cognitive Radio development
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tions, Navigation, and Identification Architecture (ICNIA) [6], dating back to 1987.

The ICNIA was a multiple-radio system consisting of a number of self-testing line

replaceable modules that comprised an aircraft radio suite.

The term SDR itself was coined somewhat later when, in 1991, Joseph Mitola

published his seminal paper [24] describing the architecture of a possible SDR system.

SDR technology started gaining particular prominence in the military communica-

tions domain, where it was viewed as a potential facilitator for interoperable tactical

radio solutions, where a multitude of mutually incompatible technologies were de-

ployed in the 2 MHz–2 GHz part of the frequency band. SpeakEasy and SpeakEasy

II projects, which took place during the 1990s, have established the basic structure

of today’s SDRs. These were eventually refined, leading to the Joint Tactical Radio

System (JTRS) – an effort by the United States army to create an integrated network

of military radio technologies. Even though the project was abandoned in 2011, it has

left a valuable legacy in the form of the Software Communications Architecture (SCA)

– an open-architecture framework that details the software structure and interfaces

for the designs of the SDRs. SCA has up to date remained a dominant framework

for the design of military SDR systems and solutions.

In 1996, the first SDR-dedicated industry association was created, which would

soon become known as the SDR Forum. The organization comprised experts from

the industry, military, regulatory agencies and academia, and had a goal of creating

innovative products, solutions and standards in the SDR domain. In 2010, it was

renamed to Wireless Innovation Forum.

In 2000, Mitola introduced and described the concepts of Cognitive Radios [25].

Built on the SDR architecture, Mitola’s ideas of Cognitive Radios introduced several

concepts that would later become popular and relevant research topics, such as more

efficient use of the RF spectrum, interference avoidance, and the radios’ potential

impacts on the end users’ daily routines.

The interest of the academic community for the Cognitive Radio research was

further sparked by Simon Haykin’s 2006 paper [17], up to date the most cited pa-

per in the Cognitive Radio research community. Haykin highlighted Opportunistic

Spectrum Access (OSA) as a particular application of interest, eventually leading

many researchers to associate the whole Cognitive Radio technology solely with the

application of OSA.

Concurrently, significant efforts were being made by the industry and regulariza-

tion bodies, resulting in the first IEEE standard for Cognitive Radios: 802.22 WRAN
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[31]. The standard specified technical requirements for the opportunistic use of the

TV white spaces.

In late 2000s, development of low-cost off-the-shelf SDR/Cognitive Radio plat-

forms brought the possibility of Cognitive Radio development and experimentation

to a wider part of the academia, as well as to home enthusiasts. Some of the most

popular platforms up to date remain Ettus Research’s Universal Software Radio Pe-

ripherals (USRPs) [28]. Significant part of their appeal lies in the open-source nature

of the underlying software architecture, called GNU Radio [16].

2.1.2 Enabling technologies

In order to successfully exploit numerous opportunities and exciting applications asso-

ciated with Cognitive Radio technology, technical difficulties related to the underlying

enabling technologies need to be adequately addressed. Two technologies most com-

monly associated with proper functioning of Cognitive Radios are spectrum sensing

and databases.

Spectrum sensing is a method for inferring spectrum occupancy information that

has so far been given the most attention in the research community. Using these

inferences, Cognitive Radio can adapt its operating parameters, such as transmission

frequency, transmission power, modulation scheme, and deployed waveform, in order

to achieve its goal. Different spectrum sensing approaches have been proposed and

analyzed in the past, the most popular ones being energy detection, matched filters

and feature detectors. These are mainly differentiated by their computational com-

plexity, necessity for a priori knowledge of the observed signals, and the means of

extracting features of the recognized signals.

Energy detection [26] is the simplest and thus easiest to implement among the

aforementioned methods. The energy detector aims at solving the decision problem

between the following two hypotheses [11]:

Y (n) =

{
W (n) H0

X(n) +W (n) H1
(2.1)

where Y (n), X(n) and W (n) are the received signals, transmitted signals and noise

samples, respectively, H0 is the hypothesis corresponding to the absence of the signal,

and H1 is the hypothesis corresponding to the presence of the signal. The decision on

the spectrum occupancy is made by comparing the test statistic T with the detection

threshold λ. T may, for example, be defined as the average energy of the observed
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samples, i.e.:

T =
1

N

N∑
n=1

|Y (n)|2. (2.2)

Main advantages of energy detectors: implementational simplicity and blind sensing,

are often overshadowed by their major setbacks: unreliability in low Signal-to-Noise

Ratio (SNR) regimes, high probability of false alarm due to noise uncertainty prob-

lems, and inability to differentiate between the sensed signals.

A popular method that relies on the prior knowledge of the sensed channel and/or

user’s signal is called matched filters [20]. Matched filters correlate the received signal

with the already known signal, comparing their frequencies, bandwidths, modulation

types, etc. While typically exhibiting the best performance in low SNR regimes among

the three mentioned approaches, matched filters require complex signal processing

and additional hardware equipment, since each type of signal present in the system

requires its separate receiver and the corresponding algorithm.

Feature detectors are based on extracting certain features of the received signal,

and comparing them to the features of the already known signals. These features

may be cyclostationary characteristics of the signal [37], which are consequence of

periodicities such as modulation rate. Alternatively, certain reference features may

be extracted from the outputs of the energy detector, such as the signal’s bandwidth,

shape and magnitude. Feature detectors typically achieve better performance than

energy detectors in low-SNR regimes, but their performance falls short from the

perfect matched filters.

An alternative approach to spectrum sensing for obtaining spectrum information

is utilized by geolocation-database Cognitive Radios. These radios are assumed to be

geographically aware, and to have the ability to access a database containing relevant

spectrum information. Among several approaches for constructing such databases,

arguably the best well known are Radio Environment Maps (REMs) [40]. REM is

a database that contains multi-domain information describing the environment in a

certain geographical area. This information typically includes spectral regulations,

terrain features, and the locations and activities of radios.

2.1.3 Interesting applications

Among a plethora of potential applications of Cognitive Radios, four of them stand

out: interoperability, Dynamic Spectrum Access, cognitive Multiple Input Multiple

Output (MIMO), and advanced Communications Electronic Warfare (CEW) solu-

tions.
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One of the primary motivations for the development and application of the SDR

technology, particularly in the military domain, is waveform and software cross-

compatibility and interoperability [30]. The SCA describes software components of an

SDR and defines its interfaces. This in turn provides the basis for re-use of modules

and radio functions. As Cognitive Radios are by and large defined as upgraded SDRs,

interoperability as a motivating application may be extended to the Cognitive Radio

domain, since a Cognitive Radio can be implemented under the SCA standard. Im-

portance and popularity of the SCA as the underlying software architecture for SDR

and Cognitive Radio development is illustrated by Figure 2.3, which shows recent na-

tional and international programs focused on SDR and Cognitive Radio development

that have adopted the SCA standard [13].

DSA techniques are expected to bring about means for better radio frequency

spectrum utilization. These may be categorized under three models: Dynamic Ex-

clusive Use, Open Sharing, and Hierarchical Access Models [39]. Opportunistic Spec-

trum Access is a form of the Hierarchical Access Model, where unlicensed Cognitive

Radios (secondary users) are allowed to utilize the spectrum as long as the commu-

nication of licensed (primary) users is protected. In order to access the spectrum

opportunistically, secondary users need to be able to acquire the spectrum occupancy

information, using one of the technologies described in section 2.1.2. From a com-

mercial perspective, OSA is the most interesting application of Cognitive Radios, as

efficient spectrum sharing could bring significant revenues to the spectrum lessors.

From a regulatory standpoint, it is one of the most challenging issues to solve, due to

rigid requirements for protecting licensed users’ communication.

MIMO design may bring several enhancements to the radio system, such as ca-

pacity enhancement, providing spatial diversity, effective co-channel interference re-

duction, and spatial multiplexing. However, introduction of multiple antennas brings

several challenges, such as increased complexity, real-time tracking of ever-changing

channel characteristics, and adapting to users’ needs. The role of the cognitive element

may then be to determine the “optimal” transmission scheme based on the observable

parameters. These techniques are commonly referred to as cognitive MIMO [4].

Maintaining reliable communication with the friendly units, while preventing the

adversaries from successfully doing so can give a crucial edge on the tactical battlefield.

For this reason, interoperability and advanced self-adaptive capabilities provided by

Cognitive Radio technology are of particular interest in the Communications Elec-

tronic Warfare (CEW) domain. By taking advantage of the on-the-fly reconfiguration

capabilities and learning techniques, more robust communication systems, as well as

12



Figure 2.3: SDR and Cognitive Radio research programmes that have adopted the
SCA standard [13]
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jamming/interception systems with higher probability of success, may be constructed

and deployed [10].

2.1.4 Current status and future developments

SDR and Cognitive Radio paradigms continue to attract particular interest in the

military domain. Since the early days of the SDR technology approximately 25 years

ago, most western countries have had tremendous progress with making their tactical

battlefield solutions software-defined. The United States Department of Defense has

arguably been the largest investor in R&D of SDR military equipment (e.g., through

the aforementioned JTRS programme). As a result, almost all of the United States

army’s military radio solutions are now software-defined. In turn, the United States

army is currently starting to look towards embodying the radios with certain levels

of self-adaptability and, ultimately, cognitivity. In Europe, great efforts are currently

being put forward by NATO partners for creating interoperable (STANAG-based)

waveforms for tactical SDR solutions, and deploying them to the battlefield. One of

the most pressing issues, however, is the lack of standardization – a problem which is

currently being tackled by the European Defence Standardisation System and NATO,

who recently presented a “Roadmap for the development of defence standards”. The

ultimate objective is worldwide standardization of SDR-based solutions, although

reaching this goal still seems to be several years ahead.

Current trends, however, indicate that huge monetary investments from the mil-

itary into SDR and Cognitive Radio R&D are becoming a matter of past. This is

particularly highlighted with the development of low-cost off-the-shelf programmable

processors, and even full SDR/Cognitive Radio platforms. Having recognized these

potentials, the military is nowadays turning towards the industry in order to develop

systems that can be fielded faster and at lower costs, and that are able to provide

open architectural solutions and commonality as a basis for interoperability. United

States Department of Defense has stated that it “wants their radio solutions to be

more spectrally efficient, and to take more advantage of the concepts that the Cogni-

tive Radio technology proffers”. The ultimate goal is “deploying portable, affordable

and energy efficient Cognitive Radios in the field.” [23]

In the academia, Cognitive Radio continues to be a hot research topic. Figure 2.4,

which plots the number of research articles with the most common keywords related

to Cognitive Radio, is a good illustration of the recent research trends. As indicated

by the figure, database Cognitive Radios and Cognitive Radios deploying compressed
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sensing have started gaining significant interest from the academic community over

the last 4–6 years, and continue to represent popular research topics.

Compressed sensing, a set of techniques that enable successful spectrum estima-

tion and reconstruction from sub-Nyquist rate sampling, may relax the burdens on

the sampling rates of the radios’ ADCs. This may in turn significantly reduce the

hardware costs of the deployed equipment, making it a topic of particular interest.

Compressed sensing is, however, as of now still largely considered an “academic ex-

ercise” – both the industry and the military are yet to match the recent advances in

the field, and to start deploying them in their solutions.

Geolocation-databases have started gaining attention as more practical alterna-

tives (or, in some cases, complementary mechanisms) to spectrum sensing for enabling

OSA. They manage to overcome many of the uncertainty, reliability and safety issues

associated with Cognitive Radios utilizing spectrum sensing, such as hidden node

problems, user emulation attacks, and noise uncertainties. Although arguably not

as exciting research topic as various spectrum sensing methods (highlighted by the

disproportion in the number of articles between the two topics in Figure 2.4), geolo-

cation/databases continue to affirm themselves as primary enablers for OSA in future
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Cognitive Radio Networks. Spectrum sensing will most probably continue to serve as

a supporting technology, e.g., as in case of the 802.22 WRAN standard [31].

Besides the tremendous interest from the military, the academia and, lately, the

industry, SDRs and Cognitive Radios have recently started finding their place among

the home radio enthusiasts as well. This is largely due to the increase in availability

and affordability of the necessary components. A good example is reported by Cass

[7], where the author presented an SDR assembled for only $40 using low-cost off-

the-shelf components. The SDR was able to receive a large variety of transmissions

with different modulation schemes, and to monitor wideband RF spectrum activities

in real-time.

Whereas many of the technical issues related to Cognitive Radios have already

been, or are on their way to be, solved, some of the major obstacles for commer-

cial deployment of Cognitive Radio systems remain to be of regulatory nature. This

is particularly true for the application of OSA. Since RF spectrum is an expensive

resource, licensed users want assurances that reliable, tested spectrum auction mecha-

nisms are in place before agreeing to subrent their parts of the spectrum to unlicensed

users.

Cognitive Radio research is currently in its very exciting phase – as SDR is be-

coming a dominant design architecture for wireless systems, serious deployment of

Cognitive Radios is finally on the horizon. As military, industry and the academics

continue to cross paths and exchange knowledge, and as standardization and regu-

larization bodies started placing more focus on Cognitive Radio technology, it is not

unreasonable to expect the Cognitive Radio systems deployed ubiquitously by the

year 2020.

2.2 Intelligent RF jamming and anti-jamming –

related work

RF jamming is a process of creating intentional harmful interference at the targeted

systems. Devices that create such interference are referred to as the jammers, and

may mutually differ in design, strategies, and capabilities. Conversely, anti-jamming

systems are designed with the goal of precluding RF jamming from successfully tak-

ing place. When Cognitive Radios are used to devise RF jamming or anti-jamming

systems, such systems are called intelligent. This section introduces state-of-the art

contributions in the domain of intelligent RF jamming and anti-jamming systems.
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The contributions are categorized as theoretical, experimental, and game-theoretical

advances in the field.

2.2.1 Theoretical contributions

Theoretical contributions mostly focus on proposing different jamming and anti-

jamming tactics, and studying their influence under different system parameters.

Typically, proposed methods are supported by simulations performed in the com-

mercial and open-source network simulation environments, such as OMNEST [18],

OPNET [32], and Network Simulator 3 [14].

One of the seminal theoretical works on intelligent jamming and anti-jamming

systems was presented by Xu et al. [36]. The authors have introduced four different

types of jamming attacks: constant, deceptive, random, and reactive, and studied

their effects on a wireless network. In addition, the paper has proposed several meth-

ods that an anti-jamming system could deploy in order to detect the presence of a

jamming attack. Among them, signal strength consistency check and location infor-

mation consistency check proved to be the most reliable methods.

Sampath et al. [29] have studied impacts that a Cognitive Radio jammer capable

of transmitting on multiple channels simultaneously can have on targeted 802.11 net-

work. Simulation results performed in Qualnet have indicated the jamming impacts

for different numbers of channels, jamming packet size, and channel switching delays.

Thuente and Acharya [33] have considered an intelligent jammer that possesses

awareness of the protocol of the targeted communication system, and is able to ex-

ploit crucial timings and control packets. Simulations performed in OPNET have

indicated the benefit of using intelligent jamming over continuous jamming in terms

of efficiency of signal duration leading to lower energy costs. Amuru and Buehrer [2]

have extended this methodology to a more general case when the jammer may have

delayed knowledge of the environment state as a result of processing delay.

2.2.2 Experimental contributions

Experimental contributions related to intelligent jamming/anti-jamming are still rela-

tively scarce, mainly due to issues related to implementation complexity of intelligent

jamming and anti-jamming systems and strict real-time requirements for signal de-

tection and automatic reconfiguration of the parameters.

Wilhelm et al. [35] were among the first to demonstrate how off-the-shelf SDR

platforms can be used to devise and deploy fast reactive jammers, i.e., jammers that
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are able to reconfigure themselves in order to target the packets that are already

transmitted over the air. The authors have presented an implementation of an in-

telligent jammer on a USRP2 SDR, and have demonstrated jamming performance

of different jamming signals: single-tone, narrowband noise, and random modulated

signals, in a 802.15.4 network.

Nguyen et al. [27] have presented an implementation of a real-time, protocol-aware,

reactive jammer targeted for high-speed wireless networks. The implementation was

done on a USRP N210 SDR. A combination of two algorithms for signal detection was

implemented at the jamming side: signal cross-correlation and energy detection. The

authors have performed study of the susceptibility of 802.16e networks to reactive

jamming attacks.

Yao and Peng [38] have proposed an anti-jamming algorithm that is able to main-

tain communication in the presence of a broadband, high power reactive jammer by

exploiting the jammer’s reaction time (the time needed to perform spectrum sensing

and to start transmitting). The proposed algorithm was based on a novel technique

to identify unjammed bits from a received bit stream. In addition, it proposed an

encoding and decoding technique that is able to recover the original message from

message fragments with unknown positions in the original message. The implemen-

tation of both the reactive jammer, and the anti-jamming system consisting of a

transmitter-receiver pair was done using USRP SDRs. The results indicated signifi-

cant improvement in performance over the traditional spread spectrum anti-jamming

systems.

Li et al. [21] have proposed a protocol that is capable of recovering regular network

communications in the presence of jamming attacks. The protocol integrates jammer

identification, jammer isolation, and key management schemes, and communicates

new channels suitable for communication to all the users. The implementation was

done on a USRP SDR.

2.2.3 Game-theoretical contributions

Conflict of interest between the RF jamming and the anti-jamming systems is obvious:

the former aim to disrupt the successful communication of the latter, whereas the

latter try to ensure that the communication takes place. For this reason, game theory

– a mathematical framework for analysis of conflicts between rational players – is a

suitable tool for analyzing jamming/anti-jamming problems. Namely, it allows for

finding optimal and near-optimal strategies for jamming and anti-jamming entities,

and to design learning algorithms that are able to converge to such strategies.
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Most of the state-of-the-art contributions in the literature on application of game

theory to intelligent jamming problems consider either channel surfing or power al-

location as anti-jamming strategies. Furthermore, they are mutually differentiated

mostly by the objective function subjected to optimization (Signal-to-Noise Ratio,

Bit Error Rate, Shannon capacity); various forms of uncertainty (user types, phys-

ical presence, system parameters); game formulation (zero-sum vs. non-zero-sum,

single-shot vs. dynamic), considered learning algorithms (Q-learning, SARSA, policy

iteration), etc.

Altman et al. [1] have proven the existence and uniqueness of Nash equilibrium

for a class of games with transmission cost. In addition, they have derived analytical

expressions for the Nash equilibrium and have formulated the jamming game as the

generalization of the water-filling optimization problem. Jamming game for OFDM

system with 5 channels was analyzed.

Wang et al. [34] have formulated the problem of jamming in Cognitive Radio net-

works with primary users as a zero-sum stochastic game, where channel hopping was

considered as the anti-jamming scheme, and minimax-Q as the learning algorithm.

They have compared the performance of the developed stationary policy with the my-

opic decisioning policy which didn’t consider the environment dynamics. The former

was shown to exhibit significantly better performance in terms of overall spectrum-

efficient channel throughout.

The method was extended by Chen et al. [8], who compared the results of Q-

learning with those of the policy iteration scheme. The performance of the proposed

scheme was evaluated against attackers of varying levels of sophistication.

Buchbinder et al. [5] and Garnaev et al. [15] have considered multi-carrier power

allocation as an anti-jamming strategy, and have formulated the games as zero-sum.

Buchbinder et al. [5] have derived lower bounds on the overall system performance

for the proposed online learning algorithm. Garnaev et al. [15] have provided formal

proofs of existence and uniqueness of Nash equilibrium points for a system where

considered players have incomplete information on the channel gains.

Amuru and Buehrer [3] have studied optimal jamming strategies in terms of de-

ployed modulation of the jamming waveform, depending on the deployed modulation

types of the targeted system. For example, the authors have shown that, when

the targeted system deploys either binary phase shift keying (BPSK) or quaternary

phase-amplitude modulation (4-PAM), the optimal jamming signal is modulated us-

ing BPSK. Conversely, when the targeted system deploys either quaternary phase
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shift keying (QPSK) or 24 quadrature amplitude modulation (16-QAM), the optimal

jamming signal is modulated using QPSK.
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Chapter 3

Security issues of Cognitive Radios

Cognitive Radio can be described as an intelligent and dynamically reconfigurable

radio that can adaptively regulate its internal parameters as a response to changes in

the surrounding environment. Namely, its parameters can be reconfigured in order to

accommodate the current needs of either the network operator, the spectrum lessor,

or the end user.

Cognitive Radio is usually defined as an upgraded and enhanced Software Defined

Radio (SDR). Typically, full Cognitive Radios will have learning mechanisms based

on some of the deployed machine learning techniques, and may potentially also be

equipped with smart antennas, geolocation capabilities, biometric identification, etc.

One of the most important capacities of Cognitive Radio systems is their capability

to optimally adapt their operating parameters based on observations and previous

experiences. There are several possible approaches towards realizing such cognitive

capabilities, such as:

• Reinforcement learning;

• Learning based on neural networks;

• Game-theoretical approach;

• etc.

Reinforcement learning refers to machine learning methods in which the radio

learns through trial-and-error interactions in a scenario without perfect contextual

information. It is a mathematical method used in the learning stage of the cognitive

cycle (an example of a cognitive cycle is given in section 6.1). Radio learns the

information based on the consequences of its previous actions, and chooses new actions

by observing the numerical rewards previously received. The goal of the radio is to
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select strategies in a way that would maximize the expected accumulated reward over

time [15].

Artificial Neural Networks (ANNs) are mathematical models inspired by the struc-

ture and functioning of biological neural networks [3]. ANNs can change and adapt

their structure based on data used during the learning phase. Furthermore, they are

able to discover and model complex relationships among acquired data. ANNs can

be trained by automatically selecting one model from the set of the allowed models

for the network. This is typically done by cost function minimization (cost functions

are directly dependent on the desired tasks). There are multiple algorithms available

for training neural network models; most of them can be viewed as a straightforward

application of optimization theory and statistical estimation. Most of the algorithms

used in training ANNs employ some form of gradient descent. This is done by taking

the derivative of the cost function with respect to the network parameters, and then

changing those parameters in a gradient-related direction. Evolutionary methods

[16], simulated annealing [19], expectation-maximization, non-parametric methods

and particle swarm optimization [18] are some of the commonly used methods for

training Artificial Neural Networks.

Game theory is a mathematical study of strategic interaction processes between

multiple independent decision makers. Since users within Cognitive Radio Networks

can be modeled as such decision makers, game theory presents itself as a natural

structure for analyzing users’ behaviors and actions, as well as for modeling suit-

able strategies in order to overcome the crucial interoperability issues. Application of

game theory to Cognitive Radio Networks is multifold – ranging from formalization of

the issues pertaining to Dynamic Spectrum Sharing (DSS), through supplying differ-

ent optimality criteria for the spectrum sharing, to deriving efficient distributed ap-

proaches for DSS by using the non-cooperative game theory. Simpler game-theoretical

solutions typically do not account for the learning capabilities of Cognitive Radios;

however, it is possible to model more advanced games, such as Bayesian games, in

order to account for the algorithms with learning capabilities. Game theory can fur-

thermore be viewed as a set of tools for analyzing security-related issues, as has been

studied for example by Liu and Wang [23].

Deployment of learning techniques represents one of the fundamental parts of the

Cognitive Radio paradigm. By using one of the approaches described above, Cognitive

Radios are able to observe and learn the status of the surrounding environment, which

in turn allows them to utilize the Radio Frequency (RF) spectrum in a more efficient

manner. The outcome of this learning process may then be used by Cognitive Radio
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devices to improve efficiency in accessing available spectrum resources. In other words,

Cognitive Radios can, for example, learn different patterns of licensed users’ activities

in order to be able to forecast availability of the resources and to adapt dynamically

to the sensed conditions. Knowledge about spectrum usage can be built by each user

without interacting with other users. Alternatively, users can collaborate in order to

not only exchange network information, but also to model and update the observed

patterns in the radio environment.

The aforementioned cognitive capabilities of Cognitive Radios are exactly what

makes them susceptible to a whole new set of possible security issues and breaches. For

example, if a malicious user is aware of the learning capabilities of the Cognitive Radio

devices in the network, it can adopt a specific activity pattern in order to deceive the

Cognitive Radios, thus possibly dramatically decreasing the overall performance of

the targeted radios and of the network. It is thus important to understand the possible

threats in order to be able to adequately respond to them. Furthermore, the threats

that Cognitive Radios inherit from Software Defined Radios, as well as from legacy

radio systems, also need to be taken into account.

This chapter describes the most common security threats and the correspond-

ing state-of-the-art solutions for legacy radio systems, SDRs, and Cognitive Ra-

dios/Cognitive Radio networks.

3.1 Threats to legacy wireless systems

There are several established security standards for wireless networks in use today. In

this section, general security issues in cellular networks, as well as the most widespread

mechanisms for WLAN security – WEP, WPA and WPA2 – are reviewed.

3.1.1 Security issues in wireless cellular networks

The openness of communication characteristic to wireless cellular networks brings a

set of security issues that need to be addressed. Hereafter follows the description of

main issues associated with the most widely used communication standards: GSM,

GPRS, 3G, and LTE.

Being the standard that had the highest impact in the evolution of commer-

cial wireless cellular networks, Global System for Mobile Communications (GSM)

has throughout its existence been given particular attention from a security stand-

point. GSM incorporates several built-in security features responsible for ensuring

subscribers’ safety and privacy, namely [17]:
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• Authentication of the registered subscribers only;

• Secure data transfer through the use of encryption;

• Subscriber identity protection;

• Inoperability of mobile phones without a SIM;

• Forbiddenness of duplicate SIMs on the network;

• Securely stored Ki.

Most of the security mechanisms in GSM are based on cryptographic algorithms,

which vary depending on the functionality that they are designed to protect. The

main algorithms are A5 (a stream cipher used for encryption), A3 (an authentica-

tion algorithm), and A8 (a key agreement algorithm). Among the two initial A5

algorithms, A5/1 is the stronger one, and is used to achieve security and privacy of

voice-over-the-air interface. While originally kept secret, it became publicly known

after being reverse-engineered, and has continued to serve as a good example for

crypto-related security hazards. A5/2 is the version without any export limitations,

which was also subjected to reverse-engineering and cryptoanalysis, in turn demon-

strating the need for a more powerful algorithm. Hence, in 2002, A5/3 was introduced

using the block-cipher called KASUMI. Besides in GSM, KASUMI is used as a cryp-

tography algorithm in General Packet Radio Service (GPRS) and 3G networks as

well.

Barkan et al. [1] have analyzed several attacks against A5 cyphers, namely:

• Class-Mark Attack: the attacker changes the class-mark information that the

phone sends to the network at the beginning of the conversation, so that the net-

work thinks that the phone supports only A5/2. Although the network prefers

to use A5/1, this leads the phone to using either A5/2 (weaker encryption) or

A5/0 (no encryption). The attacker can then exploit these weaker mechanisms

and eavesdrop on the communication.

• Recovering crypto key of past or future conversations: an attacker recovers the

encryption key of an encrypted conversation that was recorded in the past.

• Man in the Middle Attack: The attacker uses a fake base station in its commu-

nications with the mobile phone, impersonates the mobile phone, and forwards

the authentication request, that it got from the network, to the victim. The
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victim sends the 32-bit Signed Response to the attacker, who holds on to it and,

by performing a cyphertext attack, finds the cypher key, which enables him to

authenticate himself on the network.

General Packet Radio Service (GPRS) is a protocol that enables packet radio

access for GSM users. From a security viewpoint, GPRS inherits many security

problems from GSM; however, the upgraded network architecture also brings several

new issues. The GPRS architecture is associated with the following weaknesses [33]:

• Compromise of the confidentiality of subscriber identity: whenever the serving

network cannot associate the Temporary Mobile Subscriber Identity (TMSI)

with the International Mobile Subscriber Identity (IMSI), the Service GPRS

Support Node should request from the Mobile Station (MS) to identify itself by

means of IMSI on the radio path. This leaves the possibility for the adversary

to pretend to be a new serving network, to which the user has to reveal his

permanent identity.

• One-way subscriber authentication: GPRS architecture does not assure that a

mobile user is connected to an authentic serving network, thus enabling active

attacks using a false Base Station (BS) identity. Furthermore, the A3 and A8

vulnerabilities are inherited from the GSM network, whereas re-using authenti-

cation triplets makes it possible to launch Man in the Middle Attack, or Replay

Attack.

• Optional encryption of signalling and user data: optional encryption enables

the potential attacker to mediate in the exchange of authentication messages

between the legitimate user and the Base Station.

• Unsupported security protection by the SS7 technology: this deficiency of the

SS7 technology, which is used for signaling exchange in GPRS, increases the

probability of an adversary to get access to the network, or a legitimate operator

to act maliciously as well, resulting in the unprotected exchange of signaling

messages between the location registers.

Compared to its 2G and 2.5G predecessors, 3G has brought significantly better se-

curity features, mainly through the deployment of the aforementioned KASUMI block

cipher instead of the A5 stream cipher, and the Authentication and Key Agreement

(AKA) protocol instead of CAVE-based authentication. Furthermore, 3G integrity

algorithm with an Integrity Key (IK) introduces the feature of Data Integrity, whereas

29



User to User Services Integrity Module (USIM) and USIM to Terminal Authentication

provide the secure access to MS.

Long Term Evolution (LTE)’s security is largely built upon the 3G one (primar-

ily, usage of the AKA protocol), with several modifications, such as extended key

hierarchy, introduction of longer keys, better backhaul protection, and integrated

interworking security for legacy and non-3GPP networks.

3.1.2 Wired Equivalent Privacy

Wired Equivalent Privacy (WEP) was “designed to provide the security of a wired

LAN by encryption through use of the RC4 algorithm with two side of a data com-

munication” [21]. It is an optional encryption standard, implemented in the Media

Access Control (MAC) layers, which provides user authentication, data privacy, and

data integrity in a way that is supposed to make a wireless LAN equivalent to a wired

LAN.

The RC4 algorithm, also known as a stream cipher, is a symmetric cipher in

which every binary digit in a data stream is subjected separately to an encrypting

algorithm, by logically XOR-ing the key with the data. The key is shared between

communicating nodes, clients and access points, hence ensuring its secure exchange

is needed.

One of the main vulnerabilities of the WEP protocol lies in the usage of the random

Initialization Vector (IV), used in the encryption process. Namely, WEP’s IV is only

24 bits long, allowing for only relatively low number of unique combinations, that can

be reached fairly easily in busy network conditions, thus bringing the need for the

re-use of certain IVs. Hence, if RC4 for a certain IV is found, a potential attacker

can decrypt the packets with the same IV.

Furthermore, WEP does not define a key management protocol, leading to the

need for manual change of the key for each wireless device by the network adminis-

trator. This presents a big security leak, since in case of a potential security breach,

all keys need to be changed. Due to the lack of synchronization, this task is far from

trivial.

The use of the RC4 algorithm also brings an issue of weak keys; the high corre-

lation factor between the key and the output means that the attacker can somewhat

easily filter out the “interesting packets”, substantially decreasing the number of

combinations for possible keys that will allow him the access to the network.

There are two forms of authentication within 802.11 standards: Shared key and

Open system. While the latter gives a satisfactory performance in terms of security,
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the Shared key authentication, based on encryption of a challenge, brings a poten-

tial security breach in cases where the attackers are able to monitor the encryption

process.

Borisov et al. [4] define four basic types of attacks present in WEP-based wireless

networks:

• Passive Attack: a passive eavesdropper can intercept all wireless traffic, until

an IV collision occurs. Once the attacker obtains the XOR of the two plaintext

messages, the resulting XOR can be used to infer data about the contents of

the two messages. IP traffic is often very predictable and includes a lot of

redundancy, which can be used to eliminate many possibilities regarding the

contents of messages.

• Active Attack to Inject Traffic: if the attacker knows the exact plaintext for one

encrypted message, he can use this knowledge to construct correctly encrypted

packets. The procedure involves constructing a new message, calculating the

CRC-32, and performing bit flips on the original encrypted message to change

the plaintext to the new message.

• Active Attack from Both Ends: the attacker makes a guess about the headers

of a packet, which is usually easy to obtain or guess. The attacker can flip

appropriate bits to transform the destination IP address to send the packet

to a machine he controls, and transmit it using a rogue mobile station. Most

wireless installations have internet connectivity; the packet will be successfully

decrypted by the access point and forwarded unencrypted through appropriate

gateways and routers to the attacker’s machine, revealing the plaintext.

• Table-based Attack: the limited number of unique combinations of possible IVs

allows an attacker to build a decryption table. Once that the attacker learns

the plaintext for one packet, he can compute the RC4 key stream generated by

the IV that is in use, which can then be used to decrypt all other packets that

use the same IV. Over time, the attacker can build up a table of the IVs and

the corresponding key streams.

3.1.3 Wi-Fi Protected Access

Wi-Fi Protected Access (WPA) is an open standard aimed at solving problems present

in WEP-based systems. Encryption is realized through the Temporal Key Integrity
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Protocol (TKIP), which provides per-packet key mixing function for reducing corre-

lation between IVs from the weak keys. In addition, a message integrity check and a

re-keying mechanism are added. TKIP also relies on RC4, and an addition of hashing

makes for a significantly more robust mechanism.

The improvements that WPA brings over WEP may be summarized as [21]:

• A cryptographic message integrity code, or MIC, to defeat forgeries;

• A new IV sequencing discipline, to prevent replay attacks;

• A per-packet key mixing function, to de-correlate the public IVs from weak

keys;

• A re-keying mechanism, to provide fresh encryption and integrity keys, thus

mitigating the threat of attacks stemming from key reuse.

For home networks, a so-called WPA Pre-Shared Key (WPA-PSK) variation has

been designed. It is a simplified algorithm, in which an individual user must set a

passphrase (key). The difference from WEP lies in the automatic alteration of the key

every n time intervals, making it more difficult for attackers to identify the deployed

keys.

However, WPA-PSK algorithm has proven to be more attack-prone than WPA.

Several dictionary attacks were devised to somewhat efficiently exploit the Pairwise

Master Key (a feature obtained from the concatenation of the passphrase, the Service

Set Identifier, its length, and a number of bit strings used in a session).

3.1.4 Wi-Fi Protected Access version 2

Wi-Fi Protected Access 2 (WPA2), also known as 802.11i, is an amendment to the

WPA standard, aiming at improving not only security and reliability, but also the

ease of access of the WPA-based networks.

One of the most important novelties is the introduction of Counter Mode with

Cipher Block Chaining Message Authentication Code Protocol (CCMP). CCMP is

based on the Advanced Encryption Standard (AES) – an open-source algorithm that

provides significant robustness improvements.

As is the case with WPA, the most exploitable vulnerability of WPA2 stems out

from using the Pre-Shared Key (PSK).

In WPA2, user authentication is separated from ensuring the privacy and integrity

of the messages, and, like WPA, it operates in two modes:
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• WPA-Personal, or PSK: performed between the client and the access point, and

typical for home networks;

• WPA-Enterprise, or Extensible Authentication Protocol (EAP): typical for busi-

ness networks. Authentication server named RADIUS is used for authorization

decisions – it provides the Master Session Key to the client and to the access

point.

Up to this date, WPA2 is considered the most reliable Wi-Fi security protocol;

however, several vulnerabilities are still present. For example, the following attacks

on WPA2-secured systems were devised:

• PSK Brute Force Dictionary Attack: based on attacking the PSK, recognized

as the biggest weakness of WPA2. To perform an attack on the passphrase, the

attacker must eavesdrop on the network during the 4-way handshake, where he

receives everything except for the passphrase, and then performs the attack.

• Security Level Rollback Attack: based on WPA2’s feature of defining a Tran-

sient Security Network. The attacker sends wrong Beacon or Probe requests to

establish a pre-Robust Security Network Association (RSNA) connection, even

if both would support a more secure RSNA connection, namely WPA2. As pre-

RSNA does not support a cipher suite, the fraud may go through undetected,

resulting in accepting the insecure connection. This in turn allows the attacker

to obtain the default keys by exploiting WEP’s weaknesses.

• Reflection Attack: present in ad-hoc networks, where a device is not allowed

to play both the supplicant and the authenticator roles at the same time. The

original device starts the handshake as the authenticator, while the attacker

starts another 4-way handshake using the same parameters, but with the device

representing the supplicant. Once that the device starts to send messages as

the supplicant, the attacker can use these messages as a valid message for the

initial 4-way handshake with its target.

In addition to the aforementioned security issues, the so-called “Hole196” vulner-

ability which exposes WPA2-secured network to insider attacks, was discovered [26].

The attack is enabled by use of the Group Temporal Key (GTK), shared among all

authorized clients in a WPA2 network. The data traffic encrypted using the GTK

should be transceived between an access point and a legitimate user. However, a

malicious insider can potentially eavesdrop and decrypt data from other authorized
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users, as well as scan their Wi-Fi devices for vulnerabilities, install malware, in turn

compromising their security.

The Wi-Fi Alliance continuously works on improving the WPA and WPA2 stan-

dards, offering different EAP types that allow greater interoperability and higher

security. Nevertheless, certain security issues still exist, and improvements still need

to be made.

In many future Cognitive Radio Networks, it will be necessary to enable inter-

operability with the legacy systems. In addition, the wireless nature of SDRs and

Cognitive Radios will make them prone to inheriting some of the threats presented

in this section. Hence, ensuring maximum security and privacy of such systems will

be paramount. Consequently, addressing the known security issues in the current

state-of-the-art security standard for WLAN, i.e. WEP2, can be considered a good

starting point.

3.2 Threats to SDR architecture

As mentioned in Chapter 2, there is no unanimous definition of which requirements

a radio must satisfy in order to be considered software defined. Depending on the

level of software reconfigurability, some authors and organizations have established a

division between, for example, Software Capable, Software Programmable and Soft-

ware Defined Radios. For the sake of the simplicity, all of these will from now on be

referred to as Software Defined Radios, since, from the security point of view, they

mostly share common threats and problems.

It is useful to categorize the types of software present in Software Defined Radios,

as per the Wireless Innovation Forum’s guidelines, since this categorization is widely

accepted and commonly referred to in the scientific environment. Following that, it

is possible to classify the software in SDRs as [12]:

• Radio Operating Environment (ROE): consists of the core framework, the op-

erating system, device drivers, middleware, installer, and any other software

fundamental to the operation of the radio platform;

• Radio Applications (RA): software which controls behavior of the RF function

of the radio. This includes any software defining the air interface and the

modulation and communication protocols, as well as software used to manage

or control the radio in a network environment;
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• Service Provider Applications (SPA): software used to support network and

other service providers’ support for the user of the radio. It includes voice

telephone calls, data delivery, paging, instant messaging service, emergency

assistance, and geolocation;

• User Applications (UA): application software not falling into any of the above

categories.

3.2.1 General SDR-related security threats

One of the potential hazards for SDRs lies in the possibility of tampering with their

hardware. Since these hazards apply to all wireless systems and are not unique to

the new features that SDRs bring, the focus of this section is on the other types of

threats: the ones stemming out from the software’s reconfigurability. Main threats to

reconfigurability come from faulty and buggy software – hence, the deployed schemes

need to protect the system from download and usage of improper software. In gen-

eral, security-enabling mechanisms for SDRs can be divided into hardware-based and

software-based ones, each with their own advantages and disadvantages.

Hardware-based mechanisms include hardware modules for monitoring the SDR’s

reconfigurable parameters. However, unlike the SDRs that they are securing, these

mechanisms themselves are typically not easily reconfigurable, and updating the secu-

rity parameters or policies may be problematic and expensive. Software-based mech-

anisms, in their turn, rely on deploying the tamper-resistance techniques, providing

safe and secure authentication, communication security and integrity, as well as safe

algorithms for downloading, updating and distributing the software. The potential

vulnerability of such schemes is the openness to malicious modifications.

Chunxiao et al. [9] present a security architecture based on separation of the ap-

plication environment and the ROE, so that the compromise of one does not affect

the other. Furthermore, SDR reconfiguration parameters produced by the applica-

tion environment are verified against security policies before they are executed in the

radio environment. So, in cases where the application environment is tampered with

and becomes malicious, it cannot infect the radio environment, and thus the RF char-

acteristics can be ensured to be in compliance with the desired policies. For software

classification, the authors have used the Wireless Innovation Forum’s guidelines, as

was described before, where, on top of the ROE, RA, and SPA they define the User

Application Environment (UAE) as the environment (OS) where UA are executed.

The authors proceed to define a new separate layer called Secure Radio Middleware
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(SRM) – a layer implemented below UAE, which includes the most security-critical

components, namely RA and ROE. SRM is composed of:

• Bypass: the component in charge of non-critical operations;

• Memory Management Unit: the unit that controls the behavior of the OSM;

• Virtualized Hardware: the layer where all the radio applications are performed;

• Security Policy Monitor: the component that tries to decide a normal value or

range for the radio parameters and compare them to the ones that the OS passes

to Virtualized Hardware, leading to initialization of the appropriate recovery

mechanisms in cases of violation.

As the authors themselves note, their implementation has several constraints. Since

a desktop PC has been used as a testbed, the implementation does not reflect the

performance in the potential real-life scenarios, where platforms will typically be

far more resource-constrained. Furthermore, their architecture does not incorporate

mechanisms for encryption/decryption, information integrity, access control and se-

cure radio software download, which are issues that need to be addressed separately.

Brawerman et al. [5] propose a lightweight version of the Secure Socket Layer

(SSL) protocol. SSL provides bulk encryption, end point authentication, and data

integrity protection. For encryption, symmetric key algorithms are used, whereas for

authentication, client and server can mutually authenticate each other. Light SSL

redesigns the SSL protocol in order to decrease the computational complexity of the

performed operations and to perform most of the cryptography at the server side,

thus making it suitable for power-constrained devices such as SDR terminals. The

authors have defined several possible attacks, and the corresponding defense features

employed within the protocol, namely:

• Access control: countered by the authentication mechanism;

• Masquerade attack: attacker emulates the manufacturer server or a client, coun-

tered by the use of mutual authentication;

• Confidentiality: secrecy of information is ensured by establishing secure con-

nections;

• Replay: attacker re-transmits messages after a certain time period, countered

by using timestamps;
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• R-CFG validation: installation of the non-approved R-CFG, resolved by digi-

tally signing every R-CFG by the regulatory agency;

• R-CFG integrity: possibility of modifying R-CFG after it has been approved,

countered by using one-way hash functions.

3.2.2 Potential threats to common SDR architectures

Currently, there are two dominant open-source architectures for SDRs: GNU Radio,

which is particularly appealing to academic community due to the relative simplicity

of use and compatibility with low-cost off-the-shelf SDR platforms such as Univer-

sal Software Radio Peripheral (USRP), and Software Communications Architecture,

which is the architecture adopted by the Wireless Innovation Forum.

GNU Radio is an open-source software toolkit that, coupled with hardware equip-

ment such as USRP, allows for a complete platform for building Software Defined

Radios. GNU Radio can also be used as a stand-alone simulation environment. Most

of GNU Radio’s applications are written in Python, whereas C++ is used for imple-

menting signal processing blocks. Python commands are used to control all of the

USRP’s software defined parameters, such as transmission power, gain, frequency,

antenna selection, etc. GNU Radio is built on two main structural entities: signal

processing blocks and flow graphs. Blocks are structured to have a certain number of

input and output ports, consisting of small signal-processing components. When the

blocks are appropriately connected, a flow graph is made.

Hill et al. [14] have analyzed threats related to GNU Radio-based SDR systems.

By considering the GNU Radio Software Applications, written in C++, as the Radio

Applications (RA), and the Python functions as the Radio Operating Environment

(ROE), the authors identify the following shortcomings related to the ROE of GNU

Radio:

• At the moment, there is no embedded functionality for verification, i.e., securing

the SDR device from being reconfigured by a malicious code;

• There are risks related to the execution of models in the graph. Since a single

address space is shared among all the software modules, there is a possibility

for the malicious user to alter the data in the whole address space. To counter

this, the authors propose restricting each module to only be able to access its

dedicated address space;
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• There is the possibility of a buffer overflow, stemming from the use of the shared

buffer. Mechanisms for restricting the amount of data that can be written to

the buffer are needed.

They also define three possible attacks, depending on the parameter targeted:

• Modulation attack: improper change of the modulation format;

• Frequency attack: jamming attack where an impostor is transmitting on the

frequencies that it is not allowed to;

• Output power attack: where an attacker can continuously transmit at high

power, forcing other users to increase their power level, which leads to increased

battery drain.

The authors go on to suggest that GNU Radio ROE has to provide mechanisms for

evaluating and enforcing policies for specifying the operating constraints of the SDRs,

defined by the network administrators and regulators.

Software Communications Architecture (SCA) was originally defined by the United

States government with the purpose of securing waveform portability and improving

software reuse. Built originally for the United States military’s Joint Tactical Radio

System (JTRS) program, it has been accepted as a communication standard in mili-

tary services of many other countries, as well as by the commercial organizations such

as Wireless Innovation Forum. It is an always-evolving standard, with first version

dating back to 2000, that provides standardized set of methods for installing, manag-

ing, and uninstalling new waveforms, therefore maintaining interoperability between

various SDR systems.

Security is a very important aspect of radios featuring SCA. The architecture pro-

vides the foundation to solve issues such as programmable cryptographic capability,

certificate management, user identification and authentication, key management, and

multiple independent levels of classification. Manufacturers and users are embracing

the approach, albeit at a relatively slow rate. For example, the Security Supplement to

the JTRS SCA [20] requires that the SDR devices “shall only accept cryptographic al-

gorithms/algorithm packages signed by National Security Agency (NSA)”, that “NSA

shall digitally sign all Security Policy XML files”, and that “the operating system in-

vocation method shall be a NSA digitally signed script”. However, SDR middleware

and tools vendors supporting JTRS customers do not yet support digital signature

features within their products, although they generally express openness to includ-

ing such features in future releases. Similarly, user and manufacturer representatives
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in the Wireless Innovation Forum’s Public Safety Special Interest Group are trying

to identify alternatives to digital signatures before committing to such an approach,

largely due to perceptions regarding the complexity of the Public Key Infrastructure

(PKI) technology.

3.3 Threats to Cognitive Radios and Cognitive Ra-

dio Networks

As described before, Cognitive Radios can be considered as intelligent devices that are

able to learn from experiences and dynamically adapt to the features of the environ-

ment. Major research efforts have been devoted towards the study and development

of learning and reasoning techniques without considering security related issues in

detail. Typically, security issues are tackled by means of adding an authentication on

encryption mechanism to the data communication within the network. However, this

is not always sufficient due to the improved capabilities of the cognitive paradigm.

In particular, as artificial intelligence engines represent the core of cognitive devices,

potential threats that are able to feed Cognitive Radios with false sensory inputs –

thus purposely affecting their trained knowledge and subsequently their behavior –

need to be considered.

Table 3.1 summarizes the attacks and the proposed defense mechanisms addressed

in this section, also describing their basic characteristics.

3.3.1 Primary user emulation attacks

Two types of users can be differentiated in Cognitive Radio Networks deploying

Opportunistic Spectrum Access (OSA): Primary Users (PUs) and Secondary Users

(SUs). The main premise of OSA lies in the SUs’ ability to access the channels nor-

mally assigned to PUs when they are free of occupancy. In order to decide whether

the channel is momentarily free, or is in use by the PU or the other SU, the Cognitive

Radio needs to perform spectrum sensing 1. Several spectrum sensing approaches,

such as energy detection, cyclostationary feature detection, second-order statistics

detection, filterbank-based detection, etc., have been proposed up to date, each with

its advantages and disadvantages in terms of ease of implementation, decoding com-

plexity and sensing accuracy in various channel conditions. In case that the Cognitive

1Alternatively, two other methods for inference of the spectrum occupancy information: geolo-
cation/database, and beacon signals are proposed in the literature; they are addressed in Section
3.3.3
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Table 3.1: Taxonomy of Cognitive Radio attacks and threats

Attack type Contribution Attacker’s special 
characteristics 

Proposed defense scheme 

PUEA: emulating 
characteristics of 
a primary user to 
acquire exclusive 
spectrum rights 

[7] Altering its transmission power, 
modulation mode and frequency; 
injecting false data to the 
localization system 

3-step mechanism: verification of 
signal characteristics, RSS 
measurement, localization of the 
signal 

[8] Applying the estimation techniques 
to enhance its performance 

Assumes that emulating the channel 
features is not feasible for the 
attacker. Invariants of communication 
channels are used as means of 
differentiating between the PUE 
attackers from legitimate PUs 

[24] - Novel physical layer authentication 
mechanism, which incorporates 
cryptographic and wireless link 
signatures 

[11] (proposed) Ability to emulate any of the PU’s 
transmission characteristics 

Location integrity checking as means 
of deciding on the credibility of a user 

Byzantine: 
providing wrong 
data to other 
nodes in 
collaborative 
spectrum sensing 

[32] Two operating modes: causing 
False Alarm attack, or causing False 
Alarm & Misdetection 

Each user is attributed a suspicious 
level, turned into a trust value, but 
also a consistency value 

[25] Two types of attacks: false-positive 
and false-negative. The attackers 
are assumed to be able to estimate 
the channel occupancy with 100% 
precision 

Double-defense mechanism: the 
correlations between the reported RSS 
values using correlation filters are 
observed and the suspicious nodes are 
outlined; weight-combining data 
fusion rule is used 

[27] Hit-and-run attacker: able to 
estimate its current suspicious level 
and adapt its attacking scheme 

Novel reputation algorithm - the user 
is permanently excommunicated once 
his reputation value is below a 
threshold 

OFA: disrupting 
CR’s learning 
mechanism 

[28] - Set of general guidelines, e.g., Multi-
Objective Programming module 
verifies all the reconfigured 
parameters in each iteration 

Lion attack: 
multi-layer attack 
with the goal of 
causing DoS at 
the transport 
layer 

[13] - Set of general guidelines for reducing 
the efficiency of the attack 

Attacks on CCC [34] two types of attacks: DoS attack in 
multi-hop networks, and the 
greedy MAC layer behavior 

- 

[29] - Authentication of communicating 
Cognitive Radionodes as the key 
security feature 

Spectrum trading 
security issues 

[35] Attacker decreases the QoS while 
declaring that it remains the same 

Once it observes illegal behavior, PU 
decreases the amount of spectrum 
shared with SU, thus reducing its 
overall utility 

802.22-specific [2] Identification of the possible 
attacks: DoS; Replay; Jamming in 
QPs; PUEA; Threats to WMBs; 
Attacks on Self-Coexistence 
mechanism 

Security sublayer deals with some of 
the vulnerabilities, mainly through: 
Privacy Key Management v2; message 
authentication codes; Advanced 
Encryption Standard 
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Radio decides that the specific channel is momentarily not in use by the PU, it com-

petes with other potentially present SUs in order to acquire the rights to access the

channel. Furthermore, once that it has been assigned the rights to use the channel,

the Cognitive Radio will still need to periodically perform spectrum sensing and,

should it sense the presence of a PU, vacate the channel immediately.

Primary User Emulation Attack (PUEA) is a type of attack where a secondary

user falsely advertises itself as a primary user, either to acquire exclusive right to

the spectrum occupancy, or to cause Denial of Service (DoS) within the network.

Depending on the spectrum sensing technique that the legitimate SUs use, the ad-

versary emulates certain characteristics of a PU, e.g., in Cognitive Radio Networks

where SUs use energy detectors, the PUE attacker will try to create signals of similar

power, whereas in networks with feature-based detectors, the attacker will emulate

the corresponding features of the PU. To counter the PUE attacks, an appropriate

defense scheme able to distinguish between real and mimicking PUs needs to be im-

plemented within the network. One of the aggravating factors in devising such a

scheme is Federal Communication Commission’s instruction that “no modification to

the incumbent signal should be required to accommodate opportunistic use of the

spectrum by SUs” [10].

PUEAs have arguably been given the most attention in the literature out of all

the threats specific to Cognitive Radio Networks. The PUEA-defense contributions

can be divided into those where the locations of the PUs are assumed to be known a

priori, such as in cases when PUs are, for example, TV towers or base stations, and

those where the PUs’ locations cannot be assumed to be known beforehand.

Chen et al. [7] have proposed a location-based method, applicable to networks

where PUs are TV towers with high transmission power and high transmission range.

The authors model a Cognitive Radio attacker capable of altering its transmission

power, modulation mode and frequency. Two types of attacks are considered: in the

first one, the attacker alters Received Signal Strength (RSS) measurements by chang-

ing the transmission power, whereas in the second one, the attacker injects false data

to the localization system. To counter such attackers, the authors propose a scheme

that: i) estimates location of the signal source and compares it to known locations

of the TV towers, and ii) checks whether the signal’s characteristics resemble those

of the PU. Based on these comparisons, the scheme estimates the likelihood that a

signal source is launching a PUE attack, assuming that “it would be infeasible for

an attacker to mimic both the primary user signal’s transmission location and energy

level since the transmission power of the attacker’s Cognitive Radio is several orders
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of magnitude smaller than that of a typical TV tower”. The scheme consists of three

steps: i) verification of signal characteristics, ii) RSS measurement, and iii) local-

ization of the signal source. Simulation results demonstrate the effectiveness of the

scheme, designed for the networks in which PUs have fixed locations and high trans-

mission powers. In cases of mobile PUs with relatively small power (directly leading

to higher RSS fluctuations), alternative approaches would need to be considered.

Another location-based method for discovering advanced PUE attackers is pro-

posed by Chen et al. [8]. The modeled attacker is capable of applying the estimation

techniques to enhance its performance, i.e., it is able to employ a maximum likelihood

estimator to infer the transmission power of the PU and a channel parameter, and to

use those parameters and a mean-field approach to generate and launch a PUEA. It

is assumed that the attacker has the information about the location of all the entities

in the network. The authors also assume the use of energy detectors as spectrum

sensing mechanisms, meaning that the attacker needs to try and transmit signals

whose received energy at the targeted SU’s receiver will be as similar as possible to

the one transmitted by the legitimate PU. To do this, the attacker estimates the

PU’s transmission power and the channel parameter and then, taking into account

its distance to the targeted SU and PU’s distance to the SU, launches a PUEA. The

designed defense mechanism lies on the assumption that the attacker cannot success-

fully emulate the channel features. Invariants of communication channels are used

as a criteria for differentiating between the PUE attackers and the legitimate PUs.

The simulation results show that, while such an attacker could successfully defeat a

“naive” detection method, the proposed mechanism distinguishes between real PUs

and the emulators with high accuracy.

Liu et al. [24] have modeled a non-location-based mechanism, which uses a helper

node placed proximate to the PU in order to counter PUEAs. The helper node serves

as a “bridge” to enable a SU to verify the cryptographic signature carried by the

helper node’s signals, and then obtain the helper node’s authentic link signatures in

order to verify the PU’s signals. The authors propose a novel physical layer authenti-

cation mechanism, which incorporates cryptographic and wireless link signatures. It

is assumed that all SUs have reliable ways to obtain the correct public key of each

helper node, and that the helper node cannot be compromised by an attacker.

We presented a naive location-based method for identifying PUE attackers, with

the assumption of the a priori knowledge of the locations of all users [11]. The method

is based on the credibility calculation for all SUs, and the final decision of whether

42



the SU is the actual PU or the PUE attacker is done by comparing its credibility to

the predefined threshold for a given Signal-to-Noise Ratio (SNR) level.

The system model is based on the following assumptions:

• Each user has a priori information of other users’ locations;

• The attackers are capable of emulating one or more of the PU’s features, in-

cluding the ability to transmit with the same power as the PU;

• Prior to encountering the PUE attacker, the Cognitive Radio is ensured to

have established communication with the legitimate PU, in order to derive the

appropriate threshold value for user classification for a given channel.

The algorithm decides on the credibility of the user in the following manner: based on

the coordinates on the playground, the distance between the SU (Cognitive Radio)

and the legitimate PU is calculated. The RSS values of the legitimate PU transmitting

a signal at constant power are calculated for different SNR values. The expected

distance between the SU and the legitimate PU can be derived from the RSS value.

The credibility of each user is calculated as the ratio of the real distance (derived

from coordinates) and approximated distance (derived from RSS values). This value

is used as a “ground truth”, and the threshold value for future user classifications is

derived from this credibility.

The RSS values of subsequent users are calculated depending on their distance

and transmission power, and their credibility is derived using the previous method.

The credibility is then compared to the threshold, when it is decided whether a user

is a legitimate PU or a PUE attacker. It should be noted that the performance of the

algorithm is impacted significantly by the number of samples that can be obtained

from the legitimate PUs for calculating the threshold.

In the simulations, a free-space path loss channel with Additive White Gaussian

Noise (AWGN) was modeled. The transmission powers of the legitimate PU and

the emulating SU were equal. For calculating the threshold, we have performed

Monte Carlo simulations with 1000 iterations, where position on the playground was

randomized in every iteration. The threshold is calculated as: γ = 0.995·(total trust).
The credibility of each subsequent user is then compared to the threshold and, if its

value is higher than the threshold, the user is regarded as a legitimate PU.

Figure 3.1 shows the distribution of the average calculated credibility over 1000

iterations, versus SNR. Probabilities of the correct detection of the legitimate PU,

and the successful detection of the attacker are given in Figure 3.2.
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Figure 3.1: Average credibility of the users vs. SNR

Figure 3.2: Probability of the correct detection vs. SNR

Because of the noise power causing high RSS fluctuations in low-SNR environ-

ments, the credibility of the legitimate PUs is relatively low in such harsh channel

conditions. The algorithm does substantially better in higher-SNR environments.

For SNR=15dB, the algorithm is able to correctly identify legitimate PUs with 98%

accuracy, and malicious users with 92% accuracy, whereas for SNR=25 dB, legitimate
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PUs are correctly categorized with a 100%, and malicious users with 98% accuracy.

Different results can be obtained depending on the threshold constraint.

Alongside the aforementioned poor channel conditions, the main vulnerabilities

of the algorithm arise when the attacker’s location is close to that of the real PU.

In those cases, either a more complex RSS-based scheme, such as the one proposed

by Chen et al. [7], or an alternative, non-RSS-based scheme need to be used for the

successful detection of PUEAs.

3.3.2 Byzantine attacks

Once that the sensing part is finished, a Cognitive Radio needs to decide how to use

the acquired data in order to correctly estimate the channel occupancy state. While

it is possible for each entity to make this decision based only on their own spectrum

sensing outputs, more precise results can be achieved if users can exchange information

among themselves. This is the idea behind collaborative spectrum sensing, where SUs

send their results of spectrum sensing either to each other, or to a centralized entity

which then decides on the channel occupancy and sends this decision back to the

SUs. In this way, correct detection probability of a channel occupancy, potentially

impaired by the problems such as a “hidden node”, equipment malfunction, or poor

channel conditions, can be improved significantly.

However, collaborative spectrum sensing also has its drawbacks. Besides an in-

crease in computational complexity (in cases where each node has to make the decision

for themselves based on the data acquired from multiple users), and the need for use

of the additional data fusion entity (in cases of centralized collaborative sensing),

certain security issues arise as well.

Byzantine attackers send false spectrum sensing information to other users or a

centralized entity, thus increasing probability of wrong decisions regarding the spec-

trum occupancy. Furthermore, a malfunctioning node may also unintentionally cause

faulty reports. In both cases, the ability to correctly estimate channel availability –

arguably the most important feature of Cognitive Radios – can be severely degraded.

Hence, users can be classified in the following categories, depending on the type

of the misbehaving Cognitive Radio node:

• Greedy: those with the intention of acquiring exclusive privileges to vacant

channels by constantly sending the information that a channel is being occupied;

• Malicious: those with the intention of causing harmful interference between the

other users, or reducing the spectrum usage efficiency;
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• Temporarily malfunctioning: those which unknowingly send incorrect informa-

tion regarding the spectrum occupancy.

Devising a reliable method for countering byzantine failures imposes itself as a

critical task in order to implement collaborative sensing safely and successfully. Var-

ious strategies for addressing byzantine issues have been proposed in the literature,

mutually differentiated mainly with respect to the data fusion algorithm, reputation

algorithm and the special features of the considered attackers.

Wang et al. [32] proposed a relatively simple defense scheme for recognizing a

malicious user by computing the suspicious level, the trust values and the consistency

values for every user in the system. The authors consider a single malicious attacker,

and show how the algorithm, which eliminates the observations from the node marked

as malicious, performs depending on which collaborative sensing scheme is used. An

attacker can operate in two modes: causing False Alarm attack, where it reports

a higher sensed power whenever the power is below its set threshold, or causing

False Alarm & Misdetection, where it reports higher sensed power when it is below

the threshold, or lower sensed power when it is above the threshold. Each user is

attributed a suspicious level, which is then turned into a trust value. Since the trust

value itself is not reliable in cases when there are either not enough observations, or

when there is no malicious user present, each user is also assigned a consistency value.

By eliminating reports of the users whose trust values are consistently low, and then

using the OR rule for the remaining nodes, the scheme shows satisfying improvements

compared to simpler, more straightforward schemes, for both attacking strategies.

The main limitation of the scheme is the fact that it is able to deal with only a single

malicious user.

Min et al. [25] proposed a double-defense mechanism for centralized collabora-

tive sensing, which they refer to as the Attack-tolerant Distributed Sensing Protocol.

Two types of attacks are taken into account: false-positive, which classifies a non-

primary user as a primary and thus increases the probability of a misdetection, and

false-negative, which causes a failure to detect a primary signal and increases the

probability of a false alarm. Attackers are assumed to be able to correctly estimate

whether the PU is using the channel or not at all times, regardless of the decision that

the centralized entity makes, and are therefore able to switch between their attacking

modes. The proposed defense framework consists of three building blocks:

• Sensing manager: manages sensor clusters and directs the sensors to report

their readings at the end of each scheduled sensing period;
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• Attack detector: detects and discards (or penalizes) the abnormal sensing re-

ports based on pre-established shadowing correlation profile;

• Data fusion center: determines the presence or absence of a primary signal

based on the filtered sensing results.

The mechanism is implemented in a way that the clustered sensors send their RSS

values and location information to the data fusion center, which is done in two phases.

First, the correlations between the reported RSS values using correlation filters are

observed, and the nodes whose reports appear inconsistent with the others are deemed

suspicious, so their reports are not taken into account for making the decision regard-

ing the channel occupancy. The other line of defense – implemented because of the

inaccuracy of the first one when the attackers produce low-strength attacks – is a

weight-combining data fusion rule, where weights to sensors are allocated based on

their Conditional Probability Density Function (CPDF). This way, misbehaving sen-

sors are likely to be given low weight factors, meaning that their reports to the data

fusion center will be less likely to affect the final decision. The simulation results

show that the proposed algorithm is able to minimize the probability of a false-alarm

by up to 99.2% (for the first type of attack), and to achieve a probability of correct

detection of up to 97.4% (for the second type of attack), showing significantly better

performances than other state-of-the-art algorithms.

Noon and Li [27] present a specific type of an advanced attacking strategy, called

Hit-and-run, and the corresponding defense mechanism. The attacking strategy is

based on the assumption that an attacker is able to estimate current suspicious level

assigned to it by the data fusion center, and act appropriately. Namely, when he feels

that his suspicious level is high, and there is a potential for him to be expelled from

the network, he stops sending false observations and starts acting honestly. It restarts

its malicious behavior once that it calculates that it is safe again to do so, and from

there on continues to use this Hit-and-run strategy. It is assumed that the attacker

is aware of the other nodes’ reports to the data fusion center, and can model its

report based on this information. Conventional reputation-based schemes are unable

to counter this kind of attacker, hence the authors propose a new point-system. The

system permanently bans a user from the network once that he has accumulated

enough negative reputation points, where each negative point is assigned to the user

whenever his suspicion level surpasses a pre-defined threshold. By applying the Wald’s

equality, the algorithm can approximate the expected time for the attacker to reach

the threshold, as well as the time for the attacker to decrease its suspicion level.
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By combining these approximations, the time needed to detect the attacker can be

estimated. For the set number of 10 secondary users in the network, the authors

show how the algorithm fares when faced with up to three attackers. As the number

of attackers increases, the algorithm needs more iterations for successful detection;

however, it still successfully manages to excommunicate the malicious users.

3.3.3 Alternative spectrum occupancy decision methods and
the related security threats

Besides spectrum sensing, two other methods have been proposed by the Notice of the

Proposed Rule Making – Unlicensed Operation in the TV Broadcast Bands [6] as al-

ternative ways of acquiring spectrum occupancy information: geolocation/databases,

and beacon signals.

Geolocation/database approach has recently sparked particular interest in the Cog-

nitive Radio research community because it overcomes some of the drawbacks of spec-

trum sensing approaches (which vary depending on the sensing technique used), such

as potentially long sensing periods, unknown/incomplete waveform information, and

poor channel conditions. This approach requires a Cognitive Radio to have perfect

awareness of its location, and to be able to access the database containing the list

of currently available frequencies at that particular location. One feature makes the

geolocation/database approach particularly appealing from the regulatory point of

view: the possibility of easier management of the frequencies or the frequency bands

that the lessor wishes to declare as “available” or “busy” at any given time. However,

this approach brings its own set of security issues and concerns, primarily:

• Continuous database accessibility: ensuring that the database is always “up-

and-running”, and updated with the list of (un)available frequencies is a neces-

sity;

• Database management and updating: since databases need to be regularly up-

dated, there is a need for a reliable mechanism for the processes of updating

and downloading the updated content to a Cognitive Radio device;

• Database tampering: whereas the communication between a database and a

Cognitive Radio is by default intended to be one-way (Cognitive Radio down-

loading the content from a database), ensuring that malicious content cannot

be uploaded by a Cognitive Radio – by deploying anti-tampering methods – is

paramount;
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• Database emulation: similarly to PUEA, if the SU retrieves information from

a source pretending to be a spectrum lessor in a given geographical area, it

can make wrong estimations of the spectrum occupancy of a given frequency

band – i.e., it may attempt to access a channel currently marked as “busy” by

the spectrum lessor (malicious attack), or may refrain itself from accessing a

channel that is in reality marked as “available” (selfish attack);

• Providing false geolocation information: whereas many Cognitive Radio devices

are expected to have direct geolocation capabilities due to embedded navigation

systems such as the Global Positioning System (GPS), there might be instances

where this is not the case, or where a navigation system is malfunctioning. In

this case, Cognitive Radios may have the capability of calculating their coordi-

nates by triangulation with other cooperative or non-cooperative devices. This,

however, opens the possibility of providing false data, thus causing the targeted

device to perform the triangulation erroneously.

Beacon signals method refers using RF beacons as means of providing the prospec-

tive SUs information about the vacant channels in their proximity. SUs tune to a ded-

icated channel in order to extract the information of the spectrum availability from

the beacons, and then decide upon the optimal way to proceed. In case of absence of

the beacon, SUs should refrain themselves from using the spectrum opportunistically.

Main issues from a security and privacy standpoint are as follows:

• Beacon emulation: emulation attacks are a common security issue in Cognitive

Radio Networks, regardless of the approach taken towards realizing the spec-

trum occupancy inference. With this in mind, Beacon signals seem particularly

prone to such attacks, since they represent a single point of failure. The attacker

may intercept the beacon, alter the information it contains, and/or predict the

behavior of the Cognitive Radio users;

• Security of the Common Control Channel (CCC): with the assumption that

the beacons are transmitted over a dedicated channel, it is necessary to address

the related security problems. CCC-related security issues and the proposed

defense mechanisms are discussed in Section 3.3.5;

• Beacon misinterpretation: one of the challenges lies in preventing the beacon

from being received outside of the designated geographical area, thus causing

the incorrect interpretation of the contained information. As an example, a SU
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receiving a beacon from the neighbouring cell might mistakenly conclude that

a certain channel is free to be accessed opportunistically. Furthermore, in case

of multiple beacons co-existing in the same location at the same time, there

is a problem of deciding on which beacon is the one carrying the information

pertaining to that particular geographical spot.

Whereas beacon designs have been proposed in the literature, for example by Lei and

Chin [22], a complete architecture that is able to successfully address the aforemen-

tioned security problems is still an open issue.

3.3.4 Threats to reputation systems

In Cognitive Radio Networks, using reputation systems has particular purposefulness

in networks where some sort of collaboration between the users exists, such as in the

context of collaborative spectrum sensing. Whereas threats to the reputation systems

were partially covered in Section 3.3.2, it is useful to provide a more detailed coverage

of the potential attacks and issues.

Sun and Liu [31] have given a detailed comparison of the attacks on feedback-based

reputation systems, recognizing:

• Whitewashing and traitor attacks: the whitewashing attacker is able to discard

his current ID, and re-enter the system (network) with a new ID. The traitor

attacker is able to restore his reputation score by behaving non-maliciously

for a certain time period (see “Hit-and-run attacker” in Section 3.3.2). As

a defense strategy against whitewashing, the authors propose increasing the

cost/complexity for acquiring a new user ID, as well as low initial reputation

for new users. Against traitor attacks, an adaptive forgetting scheme with a

fading factor is proposed;

• Attacking object quality reputation through dishonest feedback: refers to pro-

viding false feedback information in order to lead the reputation system towards

an erroneous decision. The authors recognize three different approaches towards

tackling dishonest feedback attacks:

– Increasing the cost of dishonest feedback: users are required to have certain

credentials in order to be able to provide feedback;

– Detection of dishonest feedback: deployment of a defense scheme that

detects dishonest feedback based on the majority rule, i.e., the feedback

that significantly differs from the majority’s opinion is disregarded;
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– Mitigating the effects of dishonest feedback: feedback of users with lower

feedback reputation will have less impact on the overall score. There are

several proposed methods for calculating the feedback reputation of a user,

such as computing a weight of an user’s feedback in the feedback aggrega-

tion algorithm as the inverse of the variance in all of his feedbacks;

• Self-promotion attacks: attackers can provide honest feedback for the objects

they are not interested in; for example, in case of collaborative spectrum sensing,

for frequency bands that they are not interested in opportunistically accessing.

For countering self-promoting attacks, the defense schemes used against white-

washing and traitor attacks can be applied.

• Complicated collusion attacks: in order to enhance the efficiency of attacks and

reduce the probability of being detected, attackers may collude. The authors

differentiate two types of complex collaboration attacks:

– Oscillation attack: malicious users are divided into different groups, where

each group performs a different role at a given time – e.g., while one group

focuses on providing a dishonest feedback, the other may focus on im-

proving its reputation by providing honest feedback to the non-targeted

objects. The focuses of these groups may switch dynamically;

– RepTrap attack: malicious users focus on breaking the “majority rule” of

an object by making the majority of feedback for the given object dishon-

est.

For countering the complicated collusion attacks, two different defense schemes

were proposed: a scheme using temporal analysis, which explores the informa-

tion over time (e.g., changing trend of the rating values), and a user correlation

analysis, which aims at finding patterns between the malicious users.

3.3.5 Other attacks and threats

Several other attacks that are directly related to the cognitive functionalities of Cog-

nitive Radios have been devised and studied in the literature.

Objective Function Attacks (OFAs) are aimed at disrupting the most complex

of the functionalities of the Cognitive Radio – its learning mechanism. A learning

mechanism will typically be on top of triggering the reconfiguration process of most of

the reconfigurable radio parameters, such as frequency, modulation type, transmission
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power, and coding rate, in order to improve the overall performance, e.g., increasing

data rate, decreasing energy consumption, or enabling or disabling certain security

protocols and functions. Malicious users can try and tamper with some of these

parameters in order to prevent the targeted Cognitive Radio from adapting in an

optimal way. To counter OFAs, Pei et al. [28] proposed a simple method called Multi-

Objective Programming module, which verifies all of the reconfigured parameters. The

model is based on Particle Swamp Optimization (PSO) – a computational method for

solving optimization problems in which software agents move through the problem

space, trying to improve the candidate solution. Upon reconfiguration, the algorithm

should be able to detect the attackers, and reset the parameters to previous state.

Lion attack is a cross-layer attack pertinent to Cognitive Radio Networks, where

the malicious node targets the physical layer in order to cause DoS at the transport

layer. The attacker performs either a PUEA, or a jamming attack, thus forcing the

SU that is currently using the channel to perform frequency handoff. Because of

the high latencies of data flow within the Transmission Control Protocol (TCP), the

situation where the transport layer is unaware of the temporary disconnection due

to the handoff, can occur. The transport layer keeps streaming data, which is then

not transmitted, but queued at the lower layers, leading to certain TCP segments

being delayed, or even permanently lost, and the throughput suffering substantially.

Hernandez-Serrano et al. [13] evaluate the impacts of Lion attack on TCP perfor-

mance, validating its efficiency through simulations. The authors provide general

guidelines for reducing the efficiency of Lion attacks, namely: freezing the TCP

connection parameters during the frequency handoffs, and deploying the intrusion

detection systems for Cognitive Radio Networks.

Common Control Channel (CCC) is expected to be present in most Cognitive

Radio Networks, both centralized (for enabling the communication between base sta-

tion and SUs) and distributed (for the communication between SUs). As such, it

imposes itself as one of the potential points of attack. The attacker can, for exam-

ple, forge the MAC frames in multi-hop networks, where there is no mechanism for

the MAC frames authentication, thus causing DoS. Zhu and Zhou [34] analyze two

types of attacks on the CCC: the aforementioned DoS attack in multi-hop networks,

and the greedy MAC layer behavior. In the latter, a Cognitive Radio device may

be subjected to reconfiguration in order to exploit implicit fairness mechanisms in

lower-layer wireless network protocols, thus increasing the attacker’s performance.

Alternatively, greedy nodes may refuse to transmit data to legitimate nodes in order

to obtain better channel allocation for themselves. Safdar and O’Neill [29] proposed
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a framework for a secure CCC in multi-hop Cognitive Radio Networks. They sug-

gest that channel announcements, selection and reservation takes place in the CCC,

whereas data exchange in the selected data channel between two Cognitive Radios

occurs in the data channel part of the MAC super frame. They highlight the au-

thentication of the communicating Cognitive Radio nodes as the key feature of the

framework.

Spectrum trading refers to assigning the RF spectrum through administrative

means, thus allowing a spectrum license holder to directly control the process of

spectrum leasing or selling to a non-licensed user. As such, it is one of the most

interesting capacities of Cognitive Radios from the license holders’ point of view.

Whereas security of spectrum trading by itself has mainly regulatory significance –

thus differing from the technical mechanisms considered throughout the rest of this

chapter – it is useful to give a brief introduction to such mechanisms as well. Zhu

et al. [35] have addressed the security aspects of the spectrum trading by using a

game-theoretical approach, formulating the process as a reversed Stackelberg game.

The authors assume cooperation between a PU and a SU, where the primary Base

Station (BS) communicates with the PUs, and trades unused frequency spectrum

with the secondary network. Then, the secondary BS could act as a relay for the

primary network, where a contract is required between the primary network and the

secondary network to ensure a Quality of Service (QoS) level in the relay work. The

secondary network can gain some utility from the relay work. Moreover, unused

frequency spectrum in secondary network could also be leased to secondary users.

Applying a game theoretical framework to a desired model and searching for its Nash

equilibrium(s) requires defining a finite set of actions that each of the players can

take, as well as defining each player’s utility functions. The authors define five fac-

tors that compose PUs’ utility function: i) satisfaction with its transmission, ii) profit

from selling spectrum, iii) gain and iv) payment from the SUs’ relay work, and v)

performance loss due to the shared spectrum with SUs. SUs’ utility is comprised by:

i) gain from its data transmission, ii) profit and iii) cost from acting as a relay, and

iv) payment for the purchased spectrum. The considered security issue refers to the

scenario where the SU tries to cheat the primary PU by decreasing the QoS while

declaring that the QoS remains the same. The proposed scheme tackles this by con-

tinuously supervising SU’s performance parameter and, in case that illegal behavior

occurs, the PU punishes the SU by decreasing the shared spectrum with SU, thus

reducing its overall utility.
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3.3.6 802.22 standard for Cognitive Radio Networks and the
related security threats

The IEEE 802.22 [30] is a Cognitive Radio standard for Wireless Regional Area

Networks (WRANs) developed by the IEEE 802 LAN/MAN standards committee.

It specifies the methods for opportunistic use of white spaces in the 54–862 MHz

TV bands. Following the general paradigms of Opportunistic Spectrum Access, the

802.22 standard prescribes a set of rules for OSA, whilst ensuring that the normal

operation of the TV services remains undisrupted by interference. The standard con-

siders two approaches for achieving the knowledge about the spectrum occupancy:

spectrum sensing and geolocation/database. A centralized network architecture is

defined, where, in the case that the spectrum sensing method is used as means for

determining the occupancy, secondary base stations are in charge of directly coordi-

nating the Cognitive Radio users in order to achieve spectrum sensing synchronously.

Sensing outputs are then forwarded to a centralized entity (data fusion center), which

makes a decision regarding the spectrum occupancy.

Several security threats directly related to 802.22 standard were identified. Whereas

the standard defines existence of the security sublayer that is able to tackle several

common security issues, it does not specify any particular technique for protecting

spectrum sensing or geolocation information, or the data coming from the database.

Examples of potential 802.11-related security threats are [2]:

• Denial of Service: attackers create messages for disturbing spectrum sensing

and allocation processes. This type of threat is managed by the 802.22 security

sublayer through the Privacy Key Management v2 and message authentication

codes;

• Replay Attacks: the attacker captures and replays the local sensing reports

sent by wireless terminals to their base station. This may cause the base sta-

tion to make incorrect spectrum sensing decision. IEEE 802.22 uses Advanced

Encryption Standard (AES) for dealing with this type of attack;

• Spurious transmissions in quiet periods: the attacker transmits spurious data

(jamming) in quiet periods. In this way, the attacker can interfere with the

various coexistence-related control mechanisms carried out during those periods;

• Incumbent Signal Emulation: In PUEAs, a malicious Cognitive Radio transmits

signals whose characteristics emulate those of the incumbent signals. This type

of attack is also known as “incumbent ghosting”;
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• Security Threats against Wireless Microphone Beams (WMBs): the IEEE 802.11

standard proposes two solutions for detecting the presence of Part 74 devices

(i.e., low-power wireless devices, such as wireless microphones, which are li-

censed to operate in the TV broadcast bands). If Part 74 signals are detected,

a wireless terminal sends a WMB to collocated base stations in its vicinity.

The 802.22 standard specifies that each wireless terminal needs to possess pre-

programmed security keys that enable the use of an authentication mechanism

to prevent forgery and modification of WMBs. The security sublayer protects

WMBs from replay attacks in the same way that it protects intra-cell manage-

ment messages.

• Security vulnerabilities in coexistence mechanism: One of the most significant

security oversights in IEEE 802.22 is the lack of protection provided to inter-

cell beacons. All inter-cell control messages are vulnerable to unauthorized

modification, forgery, or replay.

Since it represents one of the main novelties that the standard defines, the last point

warrants a somewhat more in-depth explanation. Self-coexistence is a cooperation

mechanism performed between the overlapping WRANs with the intention of im-

proving performance and minimalizing interference. In cases where the base station

wishes to perform a spectrum handoff to a channel whose Signal-to-Interference Ratio

is lower than acceptable, the On-Demand Spectrum Contention protocol is used. The

protocol includes transmitting the inter-cell beacons between base stations with the

goal of sharing spectrum occupancy information. However, attackers may disrupt the

synchronization and the exclusive spectrum sharing process by sending false, modi-

fied, or replayed beacons. This is known as the Beacon Falsification attack.

3.4 Conclusions

Cognitive Radio, and some of the most important features associated with it – Op-

portunistic Spectrum Access and Dynamic Spectrum Access – undoubtedly make for

exciting, innovative and above all highly relevant research topics. However, the ad-

vanced features linked with Cognitive Radio technology bring new sets of potential

security breaches and issues. Adequately addressing these issues is paramount for

constructing safe and efficient Cognitive Radio Networks.

This chapter has given a detailed categorization of the main standards, security

problems, and corresponding solutions for legacy wireless networks, Software Defined
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Radio networks, and Cognitive Radio Networks, respectively, where each subsequent

network inherits the issues found in the previous ones.

Most of the considered security issues stem from deployment of one of the spectrum

occupancy inference methods, typically one of the spectrum sensing methods, and

the self-reconfigurability of the radios. As such, main identified threats to spectrum

occupancy inference mechanisms are Primary User Emulation Attacks, Byzantine

Attacks and Intelligent Jamming Attacks (the latter are addressed in Chapter 6).

Depending on the type of the learning mechanism deployed, a major security hazard

is present in the form of the Objective Function Attack, which targets the learning

mechanism of a Cognitive Radio.

As device capabilities and prospective ideas behind the Cognitive Radio technol-

ogy continue to evolve, so do the existing threats and attacks, with some new ones

arising on the go. Because of the numerous possibilities of variations, being able to

match them from a security perspective is often not an easy task, with challenges on

multiple fields still waiting to be resolved.

Bibliography

[1] E. Barkan, E. Biham, and N. Keller. Instant ciphertext-only cryptanalysis of

GSM encrypted communication. In Advances in Cryptology - CRYPTO 2003,

23rd Annual International Cryptology Conference, Santa Barbara, California,

USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes in Com-

puter Science, pages 600–616. Springer, 2003.

[2] K. Bian and J.-M. ”Jerry” Park. Security vulnerabilities in IEEE 802.22. In

Proceedings of the 4th Annual International Conference on Wireless Internet,

WICON ’08, pages 9:1–9:9, ICST, Brussels, Belgium, Belgium, 2008. ICST (In-

stitute for Computer Sciences, Social-Informatics and Telecommunications En-

gineering).

[3] C.M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,

Inc., New York, NY, USA, 1995.

[4] N. Borisov, I. Goldberg, and D. Wagner. Security of the WEP algorithm, 2001.

URL http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html. [Accessed:

2015-02-05].

56



[5] A. Brawerman, D. Blough, and B. Bing. Securing the download of radio con-

figuration files for software defined radio devices. In Proceedings of the Second

International Workshop on Mobility Management &Amp; Wireless Access Pro-

tocols, MobiWac ’04, pages 98–105, New York, NY, USA, 2004. ACM. doi:

10.1145/1023783.1023802.

[6] W.A. Check, A. Scott, S.L. Mace, D.L. Brenner, and D.L. Nicoll. Notice of the

proposed rule making - unlicensed operation in the TV broadcast bands. Fcc,

Washington, D.C., Washington, USA, 2004.

[7] R. Chen, J.-M. Park, and J.H. Reed. Defense against primary user emulation

attacks in cognitive radio networks. Selected Areas in Communications, IEEE

Journal on, 26(1):25–37, January 2008. doi: 10.1109/JSAC.2008.080104.

[8] Z. Chen, T. Cooklev, C. Chen, and C. Pomalaza-Raez. Modeling primary user

emulation attacks and defenses in cognitive radio networks. In Performance

Computing and Communications Conference (IPCCC), 2009 IEEE 28th Inter-

national, pages 208–215, December 2009. doi: 10.1109/PCCC.2009.5403815.

[9] L. Chunxiao, A. Raghunathan, and N.K. Jha. An architecture for secure software

defined radio. In Design, Automation Test in Europe Conference Exhibition,

2009. DATE ’09., pages 448–453, April 2009. doi: 10.1109/DATE.2009.5090707.

[10] Federal Communications Commission. Facilitating opportunities for flexible, ef-

ficient, and reliable spectrum use employing spectrum agile radio technologies.

ET Docket, (03-108), December 2003.

[11] K. Dabcevic, L. Marcenaro, and C.S. Regazzoni. Security in cognitive radio

networks. In T. D. Lagkas P. Sarigiannidis M. Louta and P. Chatzimisios, editors,

Evolution of Cognitive Networks and Self-Adaptive Communication Systems. IGI

Global, 2013.

[12] Wireless Innovation Forum. SDRF cognitive radio definitions working docu-

ment, SDRF-06-R-0011-V1.0.0. URL http://groups.winnforum.org/d/do/

1585. [Accessed: 2015-01-13].

[13] J. Hernandez-Serrano, O. León, and M. Soriano. Modeling the lion attack in

cognitive radio networks. EURASIP Journal on Wireless Communications and

Networking, 2011:2:1–2:10, January 2011. doi: 10.1155/2011/242304.

57



[14] R. Hill, S. Myagmar, and R. Campbell. Threat analysis of GNU software radio.

In Proceedings of World Wireless Congress (WWC’05), May 2005.

[15] N. Hu. Investigations of Radio Behavior and Security Threats in Cognitive Radio

Networks. PhD thesis, Stevens Institute of Technology, 2012.

[16] J. Ilonen, J.-K. Kamarainen, and J. Lampinen. Differential evolution training

algorithm for feed-forward neural networks. Neural Processing Letters, 17(1):

93–105, 2003. doi: 10.1023/A:1022995128597.

[17] European Telecommunications Standards Institute. Recommendation GSM

02.09, ”security aspects”. Etsi, Sophia Antipolis, Valbonne, France, 1996.

[18] J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Networks,

1995. Proceedings., IEEE International Conference on, volume 4, pages 1942–

1948, November 1995. doi: 10.1109/ICNN.1995.488968.

[19] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated an-

nealing. Science, 220(4598):671–680, 1983. doi: 10.1126/science.220.4598.671.

[20] M. Kurdziel, J. Beane, and J.J. Fitton. An SCA security supplement compliant

radio architecture. In Military Communications Conference, 2005. MILCOM

2005. IEEE, pages 2244–2250 Vol. 4, October 2005. doi: 10.1109/MILCOM.

2005.1606003.

[21] A.H. Lashkari, M.M.S. Danesh, and B. Samadi. A survey on wireless security

protocols (WEP, WPA and WPA2/802.11i). In Computer Science and Informa-

tion Technology, 2009. ICCSIT 2009. 2nd IEEE International Conference on,

pages 48–52, August 2009. doi: 10.1109/ICCSIT.2009.5234856.

[22] Z. Lei and F. Chin. A reliable and power efficient beacon structure for cognitive

radio systems. Broadcasting, IEEE Transactions on, 54(2):182–187, June 2008.

doi: 10.1109/TBC.2008.917737.

[23] K.J.R. Liu and B. Wang. Cognitive Radio Networking and Security: A Game-

Theoretic View. Cambridge University Press, New York, NY, USA, 1st edition,

2010.

[24] Y. Liu, P. Ning, and H. Dai. Authenticating primary users’ signals in cognitive

radio networks via integrated cryptographic and wireless link signatures. In

58



Security and Privacy (SP), 2010 IEEE Symposium on, pages 286–301, May 2010.

doi: 10.1109/SP.2010.24.

[25] A.W. Min, K.G. Shin, and X. Hu. Attack-tolerant distributed sensing for dy-

namic spectrum access networks. In Network Protocols, 2009. ICNP 2009.

17th IEEE International Conference on, pages 294–303, October 2009. doi:

10.1109/ICNP.2009.5339675.

[26] AirTight Networks. WPA2 hole196 vulnerability. URL http://www.

airtightnetworks.com/WPA2-Hole196. [Accessed: 2015-02-05].

[27] E. Noon and H. Li. Defending against hit-and-run attackers in collaborative

spectrum sensing of cognitive radio networks: A point system. In Vehicular

Technology Conference (VTC 2010-Spring), 2010 IEEE 71st, pages 1–5, May

2010. doi: 10.1109/VETECS.2010.5494003.

[28] Q. Pei, H. Li, J. Ma, and K. Fan. Defense against objective function attacks in

cognitive radio networks. Chinese Journal of Electronics, 20(4):138–142, 2011.

[29] G.A. Safdar and M. O’Neill. Common control channel security framework for

cognitive radio networks. In Vehicular Technology Conference, 2009. VTC Spring

2009. IEEE 69th, pages 1–5, April 2009. doi: 10.1109/VETECS.2009.5073450.

[30] C.R. Stevenson, G. Chouinard, Z. Lei, W. Hu, S.J. Shellhammer, and W. Cald-

well. IEEE 802.22: The first cognitive radio wireless regional area network stan-

dard. Communications Magazine, IEEE, 47(1):130–138, January 2009. doi:

10.1109/MCOM.2009.4752688.

[31] Y. Sun and Y. Liu. Security of online reputation systems: The evolution of

attacks and defenses. Signal Processing Magazine, IEEE, 29(2):87–97, March

2012. doi: 10.1109/MSP.2011.942344.

[32] W. Wang, H. Li, Y.L. Sun, and Z. Han. Attack-proof collaborative spectrum

sensing in cognitive radio networks. In Information Sciences and Systems, 2009.

CISS 2009. 43rd Annual Conference on, pages 130–134, March 2009. doi: 10.

1109/CISS.2009.5054704.

[33] C. Xenakis. Malicious actions against the GPRS technology. Journal in Com-

puter Virology, 2(2):121–133, 2006. doi: 10.1007/s11416-006-0021-1.

59



[34] L. Zhu and H. Zhou. Two types of attacks against cognitive radio network MAC

protocols. In Computer Science and Software Engineering, 2008 International

Conference on, volume 4, pages 1110–1113, December 2008. doi: 10.1109/CSSE.

2008.1536.

[35] Y. Zhu, D. Suo, and Z. Gao. Secure cooperative spectrum trading in cognitive ra-

dio networks: A reversed stackelberg approach. In Multimedia Communications

(Mediacom), 2010 International Conference on, pages 202–205, August 2010.

doi: 10.1109/MEDIACOM.2010.33.

60



Chapter 4

Assembled Cognitive Radio test
bed architecture

Cognitive Radio has so far received significant attention from the research community

from a theoretical standpoint. Many researchers rely on simulation environments for

developing and testing cognitive algorithms. As useful as the simulation environment

is for the algorithm research and development, simulators of wireless systems neces-

sarily introduce many abstractions, often leading to losing track of important real-life

constraints and obstacles. As such, demonstrating effectiveness of wireless systems’

cognitive features on a simulation basis only is not sufficient. This has inspired us

to go a step further and assemble an experimental Software Defined Radio/Cognitive

Radio test bed, which may be used for testing and validating all relevant developed

algorithms. This chapter describes the assembled architecture and its main function-

alities.

4.1 Existing Cognitive Radio test beds and plat-

forms

Prior to describing our assembled test bed architecture, a brief overview of the hard-

ware and software characteristics and the developed functionalities for several state-

of-the-art Cognitive Radio test bed architectures is given.

Researchers at the Berkeley Wireless Research Center have developed an experi-

mental Cognitive Radio platform based on the Berkeley Emulation Engine (BEE2),

and reconfigurable 2.4 GHz RF front-ends, using fiber links for inter-communication.

BEE2 engine consisted of five Xilinx Virtex-2 Field Programmable Gate Arrays (FP-

GAs), and supported connection of up to 18 individual RF front-ends, making the
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Multiple Input Multiple Output (MIMO) experimentation possible. The RF front-

ends support up to 25 MHz bandwidth in an 85 MHz frequency range. All signal

processing is done directly on the platform. The software architecture is based on

Matlab Simulink, coupled with the Xilinx System Generator library enhanced by a

set of blocks in order to support interfaces with Analog-to-Digital Converters and

Double data rate memory. The focus of the research is placed upon the spectrum

sensing implementations, showing the practical performance and constraints of energy

detectors [1] and cyclostationary feature detectors [6] in imperfect channel conditions.

Kansas University Agile Radio (KUAR) [4] is a low-cost experimental SDR plat-

form based on an embedded 1.4 GHz General Purpose Processor (GPP), Xilinx

Virtex-2 FPGA, and a RF front-end with 30 MHz bandwidth. The RF front-end is

designed to operate in the 5–6 GHz frequency band. Majority of the signal process-

ing is delegated to the FPGA, which is targeted using the software libraries running

Linux OS. KUAR’s software architecture consists of a set of Application Programming

Interfaces (APIs) that comprise the KUAR Control Library. Some of the topics of

interest are implementation of agile transmission techniques; distributed radio spec-

trum survey, and channel sounding techniques.

Maynooth Adaptable Radio System (MARS) [3] is another experimental SDR/

Cognitive Radio platform, consisting of an RF front end interconnected with a per-

sonal computer, where all the signal processing is done on the PC’s GPP. The platform

operates in the 1.75–2.45 GHz range, with the direct conversion architecture imple-

mented both at the transmitting and the receiving side. The proprietary software

architecture, called IRiS, is highly reconfigurable, and compatible with both Windows

and Linux. A set of use-cases, such as spectrum sensing, image and video transmis-

sion, and interoperability with other SDR platforms, was studied and implemented

using the platform.

A summary of the characteristics of the three aforementioned architectures, along

with our proposed SDR/Cognitive test bed architecture, is given in Table 4.1.

4.2 Test bed description

The proposed SDR/Cognitive Radio test bed [2] is implemented as a coaxial archi-

tecture. Compared to over-the-air implementation, a coaxial test bed exhibits several

important practical advantages:

• possibility to set accurate and stable RF levels;
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Table 4.1: State of the art Cognitive Radio architectures

SDR/Cognitive 
Radio architecture 

Signal processing Operating RF 
band 

RF bandwidth Applications 

BEE2, [1,6] FPGA (on board) 2.4 GHz 25 MHz Spectrum sensing; Cognitive 
MIMO 

KUAR, [4] FPGA (on board) 5-6 GHz 30 MHz Agile transmission; 
distributed spectrum sensing 

MARS, [3] GPP (external) 1.75-2.45 GHz ? Spectrum sensing; 
interoperability 

Our proposed 
architecture, [2] 

DSP+FPGA 
(external) 

30-88 MHz; 
256-512 MHz 

120 MHz Advanced communications 
electronic warfare 

 

• repeatability of the experiments without the uncertainties characteristic to wire-

less transmission;

• possibility to connect test instruments and generators to one or more branches;

• avoiding regulatory issues related to transmitting outside of the Industrial, Sci-

entific and Medical (ISM) frequency bands.

The proposed architecture consists of two Secure Wideband Multi-role – Single-

Channel Handheld Radios (SWAVE HHs) [5], each interconnected with the OMBRA

v2 – a powerful System-on-Module (SoM) embodied with a DSP and an FPGA.

Inbetween, a dual directional coupler is placed. Vector signal generator allows for in-

jecting noise/interference to the system, whereas spectrum analyzer provides reliable

monitoring of the relevant RF activities in real-time. Block diagram of the test bed

architecture is provided in Figure 4.1.

Signal 
Generator

Attenuator Attenuator
Bi-directional 

Coupler
SWAVE 

HH
System-on-

Module

SWAVE 
HH

Spectrum 
Analyzer

Figure 4.1: Cognitive Radio test bed block diagram
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SWAVE HH (from now on referred to as HH) is a fully operational SDR terminal

operable in Very High Frequency (VHF) and Ultra High Frequency (UHF) parts of

the RF band, and capable of hosting a multitude of wideband and narrowband wave-

forms. Maximum transmission power of HH is 5W, with the harmonics suppression at

the transmission side over −50 dBc. Superheterodyne receiver has a specified image

rejection better than −58 dBc. The receiver is fully digital. In VHF part of the band,

12-bit 250 MHz Analog-to-Digital (AD) converters perform the conversion directly at

RF, while in UHF part of the band, AD conversion is performed at an intermediate

frequency (IF). No selective filtering is applied before AD conversion. Wideband dig-

itized signal is then issued to the FPGA, where it undergoes digital down conversion,

matched filtering and demodulation. HH has an integrated commercial Global Posi-

tioning System (GPS) receiver, but also provides the interface for an external GPS

receiver. The radio is powered by Li-ion rechargeable batteries, however it may also

be externally powered through a 12.6V direct current (DC) source. Relatively small

physical dimensions (80× 220× 50 mm), long battery life (8 hours at the maximum

transmission power for a standard 8:1:1 duty cycle), and acceptable weight (960g

with battery) allow for portability and untethered mobile operation of the device.

Hypertach expansion at the bottom of the HH provides several interfaces, namely:

10/100 Ethernet; Universal Serial Bus (USB) 2.0; RS-485 serial, DC power interface

(maximum 12.7V), and Push-To-Talk (PTT).

The OMBRA v2 platform (from now on referred to as SoM) is composed of a small

form factor SoM with high computational power, and the corresponding carrier board.

It is based on an ARM Cortex A8 processor running at 1GHz, encompassed with pow-

erful programmable Xilinx Spartan 6 FPGA and Texas Instruments TMS320C64+

DSP. The platform can be embodied with up to 1 GB LPDDR RAM, proffers support

for microSD card up to 32 GB, and provides interfaces for different RF front-ends.

IEEE 802.11 b/g/n and ANT protocol standards are supported. Furthermore, several

other external interfaces are provided, namely: 16-bit Video Graphics Array (VGA)

interface; Mic-in, line-in and line-out audio interfaces; USB 2.0; Ethernet; and RS-

232 serial. The SoM is DC-powered, and has Windows CE and a Linux distribution

installed.

All signal processing is delegated to the SoM. Connection between the HH and the

SoM is achieved through Ethernet and serial ports. Ethernet is used for the remote

control of the HH’s parameters, using Simple Network Management Protocol (SNMP)

v3. Furthermore, Ethernet is currently used as the port for the data communication

with external systems (e.g., another HHs) – alternatively, it is possible to configure
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the HH to utilize the USB port for data communication. Serial port is used to transfer

raw spectrum data from the HH to the SoM. Interfaces between the HH and the SoM,

as well as some of the most relevant SNMP commands, are denoted in Figure 4.2 .

The actual implementations of the HH and the SoM are shown in Figure 4.3.

Two functionalities that are critical for encompassing the radios with the cognitive

features: remote control of the HH’s transceiving parameters, and spectrum acquisi-

tion, are described in Sections 4.2.1 and 4.2.2, respectively. The two waveforms that

are currently installed on the HH are detailed in Section 4.2.3.

4.2.1 Remote control of the HH’s parameters

SNMP v3 is a protocol used for externally controlling the parameters of the HH. A

single host (running on the SoM) may be used to control multiple agents (HHs) in the

network, provided that they are connected through an Ethernet hub and registered

on the same domain. By utilizing two basic SNMP commands – GET and SET – it is

possible to read the current value, or set a new value of the parameter, respectively.

The parameters that can be controlled and the corresponding values that they can

take are stored in a Management Information Base (MIB), which is loaded onto the

host. MIB contains all the definitions of the properties of the controllable parameters,

and assigns a unique Object IDentifier (OID) to each of them. Complete list of the

parameters that may be controlled externally, with the corresponding input data

types and the SNMP commands that may be invoked, is presented in Table 4.2.

4.2.2 Spectrum acquisition

The spectrum acquisition process using the HH’s wideband front end architecture,

presented in Figure 4.4, is described as follows. HH’s 14-bit AD converter performs

sampling at 250 Msamples/s. Every time that a GET_SpectrumSnapshot command is

invoked on the SoM, a burst of 8192 consecutive samples is stored into a buffer on the

HH’s FPGA, and then outputted at 115200 bauds over the serial port to the SoM,

where it may undergo further analysis. The samples correspond to the frequency

spectrum of [0, 120] MHz if the radio is operating in the VHF part of the band, or the

[fC − 35, fC + 85] MHz if the radio is operating in the UHF part of the band, where

fC is the center carrier frequency that the radio is currently using for transceiving.
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Figure 4.2: Interfaces HandHeld–SoM
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Figure 4.3: Implementations of HandHeld and SoM

A/D

RF Antenna

Filter Low-noise Amplifier Mixer

Local oscillator

Analog-to-Digital
Converter

Figure 4.4: HandHeld’s wideband RF front end architecture
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Table 4.2: Parameters of the HH that may be externally controlled via SNMP v3

Parameter Type SNMP 
commands 

File Transfer Activation string SET/GET 

File Transfer Type string SET/GET 

FTP User Name string SET/GET 

FTP Password string SET/GET 

FTP Address string SET/GET 

Login Username string SET/GET 

Login Password string SET/GET 

Transmission Power integer SET/GET 

Transmitter On/Off integer SET/GET 

Currently Installed Waveform string seq GET 

Waveform's MIB Root string GET 

Waveform Status [ON/OFF] integer SET/GET 

Audio Message ID string SET/GET 

Create New Waveform string SET/GET 

Activate Preset string SET/GET 

Activate Mission File string SET/GET 

Audio Output Gain float SET/GET 

Battery Charge Percentage integer GET 

File Download Status integer GET 

Trap Receiver's IP Address string SET/GET 

Turn Crypto [ON/OFF] integer SET/GET 

Zeroize All Crypto Keys integer SET/GET 

Crypto Key Loaded integer GET 

System End Boot integer GET 

RF Channel integer SET/GET 
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4.2.3 Installed waveforms

Currently, two functional waveforms are installed on the HHs: Soldier Broadband

Waveform (SBW) and VHF/UHF Line Of Sight (VULOS). A wideband spectrum

analyzer enables us to monitor the transmitted waveforms in real-time, and analyze

their parameters.

SBW is a digital multi-hop Mobile Ad-hoc NETwork (MANET) waveform that

provides self-(re)configurability and self-awareness of the network structure and topol-

ogy, for up to 50 nodes and up to 5 hops. Furthermore, possibility of simultaneous

streaming of voice and data services is provided, with prioritization for voice stream-

ing (in case of exceeded bandwidth). Allocated channel bandwidth is adjustable –

from 1.25 MHz to 5 MHz – with channel spacing of 2 MHz. Data is modulated using a

Quaternary Phase Shift Keying (QPSK) digital modulation technique. Self-awareness

is exercised by monitoring the network topology for changes every n seconds (monitor

interval n is adjustable). Two QoS monitoring mechanisms are provided: Bit Error

Rate (BER) Test, and the statistics data for the transmitting/receiving side. These

mechanisms proffer means for analyzing and comparing the quality of communication

in regular and impaired channel conditions. Figure 4.5 shows the shape of the enve-

lope and properties of the SBW waveform in the frequency domain, for the maximum

signal bandwidth (5 MHz), transmitted with power −3 dBW on the carrier frequency

225 MHz.

VULOS is a narrowband single-hop waveform designed for short-distance voice

or data communication. It supports operation in both VHF (30–88 MHz) and UHF

(225–512 MHz) parts of the frequency band. The waveform supports two analog mod-

ulation techniques: Amplitude Modulation (AM) and Frequency Modulation (FM).

The modulation technique, as well as the modulation index, may be configured on-

the-fly. Channel bandwidth is 25 kHz, with channel spacing also equaling 25 kHz.

Furthermore, the VULOS waveform is able to utilize both digital and analog voice

Coder–Decoders (CODECs) installed on the radio. Figure 4.6 shows envelope shape

and properties of the FM-modulated VULOS waveform, transmitted with 1 dBW

power on the carrier frequency 30 MHz.

4.3 Conclusions

The chapter has provided a technical description of the assembled SDR/Cognitive Ra-

dio test bed architecture. At the core of the architecture is the fully reprogrammable

military SDR interconnected with the computationally powerful System-on-Module.
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Figure 4.5: SBW waveform in the frequency domain – max hold

Figure 4.6: VULOS waveform in the frequency domain – max hold
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Details of all the relevant hardware and software parameters and interfaces, as well

as the currently supported waveforms, were included. The assembled architecture

allows for testing and validation of the algorithms presented in the following sections.
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Chapter 5

Traditional RF jamming and
anti-jamming techniques

Wireless communication is fundamentally susceptible to attacks due to the open na-

ture of the wireless medium. Typically, over-the-air attacks may be categorized as

either passive or active. In the former, attackers aim at eavesdropping on the tar-

geted communication channels, thus posing threat to communication privacy. Active

attackers, conversely, try to degrade quality of the communication link on the tar-

geted channels by creating intentional interference. The latter types of attacks are

also referred to as the Radio Frequency (RF) jamming attacks.

RF jamming and anti-jamming systems have particular applications in the elec-

tronic battlefield situations. This is commonly referred to as the Communications

Electronic Warfare (CEW). In the CEW domain, Electronic Attack (EA) typically

refers to the set of techniques and solutions aimed at intercepting or denying the

communication on the targeted systems, whereas Electronic Defense (ED) comprises

actions aimed at preventing EAs from successfully occurring.

Figure 5.1 shows model of the communication system considered within this chap-

ter. The system consists of a transmitter–receiver pair and an active attacker (jam-

mer). The signal from the legitimate transmitter propagates through the channel and,

on its way to the receiver, undergoes deterioration due to thermal noise, multipath

effects, and different types of interference. The jammer may be located either in the

immediate proximity of the receiver (denoted in the figure by the standoff radius),

or further away. In both cases, its intention is to interfere with the receiver, not the

transmitter. The signal from the jammer to the receiver also undergoes deterioration

due to the aforementioned channel effects. However, since the transmitter–receiver

and the jammer–receiver propagation paths may be – and typically will be – in-

dependent of each other, the two respective signals will undergo different levels of
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deterioration.

Figure 5.1: Model of the considered communication system

This chapter presents traditional jamming and anti-jamming techniques in wire-

less systems, and discusses their efficiencies depending on the properties and pa-

rameters of the overall system. An analysis of the crucial aspects that influence

the success rate of jamming and anti-jamming systems is performed from a theo-

retical perspective. These results are complemented by the experimental analysis

using the SDR/Cognitive Radio test bed architecture presented in Chapter 4. Under-

standing these factors is an important basis for an efficient design of jamming/anti-

jamming systems that utilize the advanced capabilities of the Software Defined Ra-

dio/Cognitive Radio technology, discussed in Chapter 6.

5.1 Jamming techniques

Deployment of different jamming tactics and techniques directly influences the prob-

ability of jamming success. In this section, we explain some of the most commonly

employed jamming tactics and analyze their performance in digital communication

systems. Deployment of jamming tactics will often be restricted by the hardware ca-

pabilities of the jamming entity. An advanced jammer may switch between different

tactics in order to adapt to the targeted communication system.
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The jamming success rate depends on multiple parameters of the communication

system, namely:

• Received power of the jamming signal;

• Received power of the targeted transmitted signal;

• Type, modulation and bandwidth of the jamming signal;

• Modulation and bandwidth of the targeted transmitted signal;

• Error correction mechanisms implemented within the transmitted signal;

• Sensitivity of the receiver;

• Type of detector implemented at the receiver (coherent or non-coherent).

We present a theoretical analysis of jamming efficiency for various levels of trans-

mission power for both the jamming and the transmitted signal. The analysis is

done for two different modulation techniques of the targeted transmitted signal: Bi-

nary Phase Shift Keying (BPSK) and Quaternary Phase Shift Keying (QPSK). These

techniques represent the most common digital modulation choices for anti-jamming

systems based on Direct Sequence Spread Spectrum (DSSS), which are described in

Section 5.2.2. The presented derivations and results correspond to the receiver ar-

chitectures that implement coherent detection, as these are the only suitable design

choices for the aforementioned modulation techniques. The considered targeted trans-

mitted signals do not contain error correction mechanisms 1. It should be noted that

most error correction techniques provide good improvement only at already relatively

low Bit Error Rate (BER) levels (e.g., less than 10−3), whereas at high BER levels

(more that 10−1), the added protection is negligible [4, p. 41].

When all the parameters of the communication systems are defined as above, the

performance of the jammer will be a function of Jamming-to-Signal Ratio (JSR).

Prior to introducing the JSR, let us describe parameters of the communication model

presented in Figure 5.1.

The received power at the receiver’s antenna with gain GRT in the direction of the

receiver, for the transmitter transmitting with power PT with transmission losses LT ,

1An interested reader is referred to Torrieri [9] for a detailed evaluation of the influence of error
correction mechanisms on the quality of communication.
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with antenna gain in the direction of the receiver GTR, and with propagation losses

on the transmitter-receiver path LTR, can be expressed as:

PRT =
PTGRTGTR

LTLTR
. (5.1)

Similarly, the received power at the receiver’s antenna with gain GRJ in the di-

rection of the jammer, for the jammer transmitting with power PJ with transmission

losses LJ , with antenna gain in the direction of the receiver GJR, and with propagation

losses on the jammer-receiver path LJR, can be expressed as:

PRJ =
PJGRJGJR

LJLJR
. (5.2)

Then, the JSR ξ is defined as:

ξ =
PRJ
PRT

. (5.3)

Signal-to-Jamming Ratio (SJR) is the reciprocal value of JSR, and is denoted by

γ:

γ =
1

ξ
. (5.4)

In order to achieve its goal, a jammer can deploy several different jamming tactics

– each with its own advantages and disadvantages, depending on the constraints of the

jamming entity and the characteristics of the targeted system. Some of the commonly

deployed jamming tactics are described below.

Narrowband noise jamming corresponds to the jammer that uses all its power to

generate and transmit a random Gaussian noise waveform on a single channel. The

bandwidth of such signal may be equal to the width of the targeted channel, or may

be restricted to a specific part of the channel – ideally, the part equaling to the data

signal width of the targeted transmitted signal.

Partial band noise jamming tries to improve jamming efficiency by distributing

the available energy over multiple channels used by the targeted system. This type

of jamming is often used against systems relying on spread spectrum techniques.

Full band noise jamming, sometimes referred to as barrage jamming, can be viewed

as a special case of partial band noise jamming, where the jammer distributes its en-

ergy over all of the channels utilized by the targeted communication system. This

type of jamming, however, often requires impractically large amounts of jamming

power and/or physical placement in the immediate proximity of the targeted com-

munication system – typically within its standoff radius. When successfully deployed
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against a spread spectrum system, full band noise jamming can have impact not only

on the successful decoding of the targeted signal, but also on the synchronization

and tracking phases of transmitter–receiver pair. For example, for a targeted system

that deploys frequency hopping spread spectrum with fine tracking, the receiver may

be prevented from successfully tracking the transmitter, since it will not be able to

adequately tune its clock/oscillator [5, pp. 472–475].

Single-tone jamming refers to transmitting a single tone – typically, a sinusoidal

signal – on a given carrier frequency. Single-tone jamming can have high success rates

when the target is a narrowband signal. It may often represent the best strategy for

jammers with limited transmission power, as it allows them to concentrate all of their

power on a single data channel.

Multi-tone jamming occurs when the jammer distributes its power on multiple

tones, which may be placed on specific frequencies, or randomly. These types of

jammers are sometimes referred to as comb jammers, and typically have higher success

rates against wideband communication systems than single-tone jammers, provided

that they are able to transmit with sufficient power to cause degradation to the

targeted system. Furthermore, they may be particularly suitable for jamming systems

that employ Frequency Shift Keying (FSK) modulation, where the carrier frequency

is changed according to the modulating digital signal, resulting in different frequencies

each representing a different symbol. Frequency Hopping Spread Spectrum systems

deploy FSK modulation – typically, Binary FSK (BFSK).

Figure 5.2 sketches the possible transmitted narrowband signal, transmitted DSSS

signal, and the aforementioned types of jamming signals.

We focus our analysis on two types of jamming signals: narrowband noise, and

single-tone jamming, in different SNR and SJR regimes.

5.1.1 Jamming the BPSK-modulated signals

In Phase Shift Keying (PSK), the phase of the carrier is changed according to the

modulating digital signal. We consider the relative phase changes of the signal, as

opposed to the differential changes which characterize the Differential PSK (DPSK)

techniques. Among all the PSK techniques, BPSK has the lowest spectral efficiency,

amounting to 1 bit/s/Hz. Its phases are separated by π rad. A signal s(t) modulated

using BPSK during time interval k can be represented as:

sk(t) =
√

2Rcos(2πf0t+ dk
π

2
), (k − 1)T ≤ t < kT (5.5)
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Figure 5.2: Examples of targeted transmitted signals and considered jamming signals
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where R is the average signal power, dk ∈ {+1,−1} determines the data bit, f0 is the

carrier frequency, and T is the symbol period.

5.1.1.1 AWGN channel only

The received signal r(t) during time interval k can be written as:

rk(t) = sk(t) + n(t), (5.6)

where n(t) incorporates Additive White Gaussian Noise (AWGN) and any eventual

interfering signals.

The corresponding probability density function (pdf) of r(t) is:

p(r|dk) =
1√
πN0

e
− (r−dk

√
ES)2

N0 , (5.7)

where ES represents the average signal energy, and N0 represents noise energy.

The decoder differentiates between the symbols by comparing the received signal

with the threshold γ, for example:

symbol =

{
s0, r(t) < γ
s1, r(t) > γ

(5.8)

Then, the probability of error given that s1 is transmitted can be expressed as:

Pr{e|s1} =
1√
πN0

∫ 0

−∞
e
− (r−

√
ES)2

N0 dr =
1

2
erfc(

√
ES
N0

), (5.9)

where erfc(x) is the complementary error function of x given by:

erfc(x) =
2√
π

∫ ∞
x

e−z
2

dz. (5.10)

Assuming that both symbols are equally likely, i.e., Pr{e|s1} = Pr{e|s0} = 0.5,

the symbol error probability of the BPSK corrupted by the AWGN is given by:

Pe =
1

2
erfc(

√
ES
N0

). (5.11)

The influence of AWGN on the Symbol Error Rate (SER) performance of BPSK

is shown in Figure 5.3.

5.1.1.2 AWGN channel with narrowband noise jamming

When the jammer injects narrowband Gaussian noise on the targeted channel, the

symbol error probability increases correspondingly:

Pe =
1

2
erfc(

√
ES

J +N0

), (5.12)

where J is the average power of the injected noise signal at the decoder of the receiver.
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Figure 5.3: Influence of AWGN on SER for coherent BPSK

5.1.1.3 AWGN channel with tone jamming

Similar to (5.5), the jamming tone j(t) during time interval k can be described as:

jk(t) =
√

2Jcos(2πf0t+ θJ), (k − 1)TS ≤ t < kTS (5.13)

where J is the average power in the jamming tone, θJ is the phase offset of the

interfering signal compared to the jamming signal, and TS is the symbol period.

Then, the overall received signal is:

rk(t) = sk(t) + nk(t) + ik(t), (k − 1)TS ≤ t < kTS. (5.14)

When the jammer injects a single tone onto the center carrier frequency of the

channel used for communication, the probability of symbol error depends on the phase

of the jamming signal – namely [6, p. 673]:

Pe = Q(

√
2
R

N0

(1−
√

2J

R
sin(θJ))), (5.15)

where Q(x) represents the Q-function, defined as:

Q(x) =
1

2
erfc(

x√
(2)

). (5.16)
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Figure 5.4: Influence of AWGN with single tone jamming on SER for coherent BPSK

Hence, in order for the jammer to successfully jam the signal, the phases between

the jamming and the targeted signal must not coincide.

Figure 5.4 shows the SER performance for coherent BPSK when the interfering

tone is present on the center carrier frequency of the data channel and θ = π
2
, for

different levels of γ.

Here, γ = ∞ corresponds to the situation with no jamming tone present, as was

shown in Figure 5.3. As the power of the jamming signal increases, the performance

of the communication system starts decreasing rapidly. The objective of the jammer

will often be to cause SER≥ 10−1 in order to efficiently disable the communication,

although the exact value is situation-dependent.

5.1.2 Jamming the QPSK-modulated signals

Compared to BPSK, QPSK technique doubles the spectral efficiency, increasing it to

2 bit/s/Hz. This is done by simultaneously transmitting two BPSKs in quadrature,

achieving the phase separation of π/2 rad. A signal s(t) modulated using QPSK
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during time interval k can be represented as:

sk(t) =
√

2Rsin(2πf0t+ dk
π

4
) (5.17)

= ±
√
Rcos(2πf0t)±

√
Rsin(2πf0t), (k − 1)T ≤ t < kT (5.18)

where dk ∈ {1, 3, 5, 7}.

5.1.2.1 AWGN channel only and AWGN channel with narrowband noise
jamming

The received signal can once again be expressed as (5.6).

Similarly to (5.11), and assuming that all four symbols are equally likely, the

derivation of the probability of symbol error can be expressed as:

Pe = erfc(

√
ES
2N0

)− 1

4
erfc2(

√
ES
2N0

) (5.19)

≈ erfc(

√
ES
2N0

). (5.20)

Analogously to (5.12), the symbol error probability in the presence of the narrow-

band noise jammer becomes:

Pe ≈ erfc(

√
ES

2(J +N0)
). (5.21)

The influence of AWGN on the SER performance of QPSK is shown in Figure 5.5.

5.1.2.2 AWGN channel with tone jamming

Since QPSK can be represented as two antipodal BPSK signals, the tone jammer

needs to efficiently jam either the quadrature, or the in-phase component of the

targeted signal. The probability of causing a symbol error on each of these components

is given by [6, pp. 673–674]:

Pe
I = Q(

√
R

N0

(1−
√

2J

R
sin(θJ))) (5.22)

Pe
Q = Q(

√
R

N0

(1 +

√
2J

R
cos(θJ))). (5.23)

The average symbol error probability for the QPSK signal, conditioned on the

phase θJ of the jamming signal may then be computed as:

Pe = Pe
I + Pe

Q − Pe
IPe

Q (5.24)
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4

Figure 5.6 shows the SER performance for coherent QPSK when the interfering

tone is present on the center carrier frequency of the data channel and θ = π
2
, for

different levels of γ.

The results show that, for θ = π
2
, the performance of QPSK for achieving SER=

10−6 is approximately 3dB worse when compared to BPSK, i.e., the jammer will need

to invest 2 times less power to cause the same SER.

The influence of θ is highlighted in Figure 5.7, which shows the SER performance

when the interfering tone has a phase delay of θ = π
4

with respect to the transmitted

signal: In high-SNR and low-SJR environments, in order to achieve the same SER,

the jammer needs to invest approximately 3dB more power compared to when θ = π
2
.

Assuming that the phase of the jamming signal is evenly distributed over [0, 2π],

the unconditional average symbol error probability can be computed as:

Pe
uncond. =

1

2π

2π∫
0

Pedθ
J . (5.25)

Which jamming tactic a jammer should deploy depends primarily on the char-

acteristics of the targeted communication system, however it depends also on the
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capabilities and constraints of the jammer. Wideband jammers equipped with multi-

ple antennas may decide to perform transmission on multiple channels simultaneously,

however, power constraints may force them to limit the number of channels to a rela-

tively small value. Finding a compromise between a number of channels to transmit

on, and ways of distributing the available power across them is a principle challenge

of any power-constrained jamming entity.

5.2 Anti-jamming techniques

Anti-jamming techniques designed for the tactical battlefield solutions may broadly

be divided in two categories: i) those aiming to achieve Low Probability of Detection

(LPD), and ii) those focusing on Low Probability of Interception (LPI). LPD systems

focus on “hiding” transmitted signals from potential adversaries. This can be done ei-

ther by refraining from transmitting in certain time periods – the so-called EMissions

CONtrol techniques – or by spreading the transmitted signal over a wide frequency

band, as deployed in Direct Sequence Spread Spectrum systems. Conversely, LPI

systems imply that the signal may be detected relatively easily, while being difficult

to intercept or to jam. The best example of LPI is given by Fast Frequency Hop-

ping Spread Spectrum signals, which are relatively easily to detect, but due to rapid

changes in the frequencies used for transmission may not be readily jammed. The

three aforementioned techniques are presented below.

5.2.1 Emissions control techniques

In order to protect the communication, the radios comprising the system may take

coordinated actions aimed at preventing the adversaries from eavesdropping and/or

successfully jamming the communication. Among the electronic protect methods in

the CEW domain, the most widely deployed techniques are referred to as EMissions

CONTtrol (EMCON) [3]. EMCON techniques limit the communication between the

friendly systems in defined time periods (usually periods estimated as most critical).

The systems are allowed to receive data, however, they may not acknowledge any

data reception.

5.2.2 Spread spectrum techniques

Spread spectrum systems use large RF bandwidth to spread the original signal. Two

spread spectrum systems that are most common are DSSS, and FHSS.
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In DSSS [2], the original signal is multiplied with a pseudo random noise spreading

code, thus significantly increasing the utilized RF bandwidth. However, DSSS systems

are still somewhat vulnerable to tone and narrowband noise jamming signals, in

particular when the jammers are placed in the standoff radius of the targeted receiver.

Sufficiently powerful jamming signal may then overcome the processing margin of the

receiver, causing the noise leak in the demodulation process, and in turn raising the

noise floor at the baseband [4, p. 42]. DSSS systems most commonly deploy BPSK or

QPSK modulation, hence the analysis performed in Section 5.1 is pertinent to these

systems.

In FHSS systems, the transmitter–receiver pair continuously changes the oper-

ating frequency according to a pre-defined pattern. Depending on the hopping rate

– the time during which the signal stays on the same carrier frequency – there are

two types of FHSS systems: slow and fast. In the former, one or more data bits

are transmitted over the same carrier, whereas in the latter, each bit is transmitted

over several carriers. While fast frequency hopping systems typically provide lower

probability of interception, they are also more complex to implement and require fine

tracking. This makes them particularly vulnerable to powerful wideband jamming

that may prevent the tracking phase from successfully occurring. Independent Mark-

Space signalling [7] was developed to make frequency hopping a more robust anti-jam

technique. FHSS systems typically deploy BFSK modulation, whose performance

under various types of interference was evaluated by Viswanathan and Taghizadeh

[10], Teh et al. [8].

5.3 Experimental results

This section presents experimental results of jamming efficiency, performed using the

test bed architecture presented in Chapter 4. The goal of the experiments is to

evaluate the impact of different jamming signals on the quality of communication,

and the corresponding robustness of the targeted waveform.

Soldier Broadband Waveform (SBW), introduced in Section 4.2.3, is used as the

waveform deployed by the transmitter–receiver pair. SBW is a wideband QPSK-

modulated digital waveform operable in 30–88 MHz part of the VHF band and the

225–512 MHz part of the UHF band. It implements turbo coding with code rate 1/2

[1] as an error correction mechanism. Packetized data transmission is used, with each

packet consisting of 29 bytes.
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Figure 5.8: Experimental setup

For the experiments, communication is established in the UHF part of the band

– namely, 225 MHz is used as the frequency of the transmitter–receiver pair. The

bandwidth of the SBW waveform is set to 1.3 MHz. A vector signal generator, capable

of producing both narrowband and wideband non-modulated as well as modulated

waveforms, is used to create interference on the targeted channels. The experimental

architecture is denoted in Figure 5.8.

First, the transmitter and the receiver establish communication on the given chan-

nel, with the transmitter placed in the constant transmission mode. Then, the jam-

ming signal is placed on the targeted channel, resulting in the degradation of the

quality of communication. In order to evaluate impact of the jamming signal on the

targeted system, a high SNR-regime is established – namely, SNR= 29.3 dB, which

makes impacts of channel noise and other sources of interference negligible. The

transmission power of the targeted signal is kept equal, while the jamming power is

modified in order to achieve different SJR regimes. The quality of communication is
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Figure 5.9: Jamming tactics in a high SJR environment

evaluated by measuring the Packet Delivery Rate (PDR), defined as:

PDR =
N(Packets received)

N(Packets transmitted)
(5.26)

Figure 5.9 illustrates the considered jamming signals for high SJR (S > J) en-

vironment. Figure 5.10, conversely, illustrates the signals in a low SJR (S < J)

environment.

The first set of experiments evaluates impact of single tone jamming under dif-

ferent SJR regimes. The jamming signals are created with three different frequency

offsets with respect to the center carrier frequency of the targeted signal: 0, 0.25, and

0.5 MHz. At any instance of time, the phase of the jamming signal may take any ran-

dom value over [0, 2π]. The results showing the PDR for a total of 1000 transmitted

packets for each SJR-regime are presented in Figure 5.11.

The performance of the jamming tones without any offset and with the 0.25 MHz

offset with respect to the center carrier frequency of the targeted signal fC is almost

identical. This is because the envelope of the SBW waveform shows that the signal

energy is spread equally over the [fC − 0.4, fC + 0.4] MHz. However, the tone placed

on the fC + 0.5 MHz achieves a performance approximately 4 dB worse, which stems

from the fact that the frequencies corresponding to the edges of the envelope contain

significantly less signal energy. Hence, for the tone jammer to be successful against

wideband digital signals, it needs to be able not only to find the channel occupied
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by the targeted signal, but also to estimate the distribution of its energy over the

occupied carriers.

The experiments were performed subsequently for narrowband noise jamming.

Two cases are considered: i) the jammer is able to spread the noise around the center

carrier frequency fC of the targeted signal, and ii) the jammer spreads the noise

around fC + 0.65 MHz, i.e., it is able to target only half of the bandwidth of the

SBW signal. The experiments are performed under the same conditions as for the

tone jamming signals. The results are presented in Figure 5.12.

The jammer that is able to cover the full bandwidth used by the targeted signal

(no frequency offset) is able to cause the same PER in approximately 4 dB higher SJR

environments compared to the jammer that places the energy around the fC + 0.65

frequency and effectively covers only half of the bandwidth.

Finally, we evaluate side-by-side efficiency of four different jamming tactics for the

jammer with limited transmission power: i) tone jamming, ii) 1 MHz AWGN jam-

ming, iii) 3 MHz AWGN jamming, and iv) 5 MHz AWGN jamming. The motivation

for considering wideband noise jamming lies in the fact that the jammer may not be

able to accurately predict the exact channel used by the targeted receiver. In that
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Figure 5.13: Jamming success of a jammer with fixed power in a low SJR environment

case, it could potentially increase its efficiency by spreading its energy over multiple

consecutive channels.

We present the results of the analysis for the jammer that is able to accurately

and consistently estimate and target the center carrier frequency of the system in

Figure 5.13. Tone jamming proves somewhat successful in jamming the wideband

waveform. However, in order to cause the same PER, a 1 MHz AWGN jammer would

need to create a signal with approximately 4 dB lower amplitude compared to a tone

jammer, 5 dB lower compared to a 3 MHz AWGN jammer, and 7 dB lower than a

5 MHz AWGN jammer. As such, narrowband noise jamming presents itself as an

optimal choice for jamming wideband digital waveforms.

5.4 Conclusions

This chapter analyzed some of the most commonly deployed jamming and anti-

jamming techniques using the legacy radio systems. Two basic jamming tactics,
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narrowband noise jamming and tone jamming, were presented in more details. Their

effects on the performance of communication systems deploying two most frequently

used digital modulation techniques – BPSK and QPSK – were analyzed. Tone jam-

ming was shown to be an efficient tactic against digital narrowband signals; however,

its efficiency against PSK-modulated signals depends on its phase offset with respect

to the targeted signal. The chapter has also described principles of the state-of-the-

art anti-jamming solutions, namely emissions control and spread spectrum systems.

In addition, the chapter provided experimental results showing the effects of different

jamming signals on the Soldier Broadband Waveform – a digital QPSK-modulated

wideband waveform used by the SWAVE HandHeld SDRs that were presented in

Chapter 4. Narrowband noise jamming was shown to be the most efficient among

the jamming tactics, provided that the jammer is able to correctly estimate the exact

frequency used by the targeted transmitter–receiver pair.
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Chapter 6

RF jamming and anti-jamming
using Cognitive Radios

As opposed to the legacy radio systems, whose functionalities are for the most part

restricted by the deployed hardware components, Software Defined Radios (SDRs)

provide reconfigurability of most of their parameters through software changes run

on the programmable processors: Field Programmable Gate Arrays (FPGAs) or Digi-

tal Signal Processors (DSPs). Cognitive Radios take the technological advances a step

further by embodying the SDRs with the self-reconfigurability and learning prospec-

tives.

This chapter focuses on some of the impacts that the SDR/Cognitive Radio tech-

nology brings to the Communications Electronic Warfare (CEW) domain. CEW

systems [13] focus on intercepting or denying the communication on the targeted sys-

tems (electronic attack) [5], or taking actions aimed at preventing electronic attacks

from successfully occurring (electronic defense). On-the-fly reconfiguration capabili-

ties coupled with learning and self-adaptive potentials of Cognitive Radio technology

may aid both the attacking and the defending side in multiple ways [3]. Deploying en-

ergy detection spectrum sensing may embody the attacker with the ability to monitor

the target transmitter’s transmission frequency, estimate the target receiver’s signal

strength and calculate the signal strength necessary to efficiently jam the communi-

cation. Performing feature detection spectrum sensing may allow the attacker to infer

even more of the parameters of the target transmitter, such as deployed modulation

type or coding mechanism. Subsequently, it may use these inferences to deploy jam-

ming tactics with higher probability of success, e.g., by taking advantage of the fact

that different modulation techniques are characterized by different levels of resilience

to interference. Finally, the attacker may use learning techniques to observe and

learn the transmitter’s patterns, such as the deployed frequency hopping or power
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allocation schemes. Analogously, similar benefits may be provided to the defending

side.

The focus of the chapter is placed on the electronic defense part of the advanced

CEW. We presents ideas, development and implementation aspects of the Spectrum

Intelligence algorithm for Radio Frequency (RF) Interference Mitigation. The concept

is built on the enabling technologies of spectrum sensing, waveform analysis, Temporal

Frequency Maps1, and self-reconfigurability potentials of the SDR/Cognitive Radio

technology. Along the way, we acknowledge and address some of the challenges faced

when porting the algorithms to the real-life SDR/Cognitive Radio platform, described

in Chapter 4, and propose practical solutions for the identified problems.

6.1 Spectrum Intelligence for interference mitiga-

tion

The principal idea behind the Spectrum Intelligence algorithm [4] is to continuously

monitor relevant RF spectrum activities, identify potential threats to the communi-

cation, and take proactive measures to ensure communication robustness and secrecy.

For doing so, the algorithm relies on reliable spectrum sensing mechanism, correct

identification and extraction of the relevant parameters, and secure software unsub-

jected to tampering. The functional process of the Spectrum Intelligence algorithm

can be represented in the form of the Cognitive Cycle, as shown in Figure 6.1.

6.1.1 Stages of the Cognitive Cycle

6.1.1.1 Sense

Sensing, i.e., acquisition of the wideband RF spectrum, is performed periodically for

the frequency band of interest. This may be done by taking either a quiet or an active

approach, depending on the implementation of the architecture.

6.1.1.2 Process

Then, data processing takes place. Parsed data is time aligned if needed, and trans-

formed into frequency domain by performing the Fast Fourier Transform (FFT).

Thresholding is then performed with the aim of discarding background noise, and

1We are intentionally creating a distinction between the Temporal Frequency Maps, and the
similar but more advanced concept of Radio Environment Maps [16].
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Figure 6.1: Cognitive cycle representing the Spectrum Intelligence algorithm

keeping only the FFT bins corresponding to actual signals. This corresponds to

solving the decision problem between the following two hypotheses [6]:

Y (n) =

{
W (n) H0

X(n) +W (n) H1
(6.1)

where Y (n), X(n) and W (n) are the received signals, transmitted signals and noise

samples, respectively, H0 is the hypothesis corresponding to the absence of the signal,

and H1 is the hypothesis corresponding to the presence of the signal.

Finding the appropriate threshold is the principal challenge of any energy detec-

tion scheme. The most common approaches are the Constant Detection Rate (CDR)

and Constant False Alarm Rate (CFAR) detectors, where threshold is set adaptively

depending on the SNR regime and the characteristics of the sensed wideband sig-

nal. However, it should be noted that even in adaptive thresholding, presence of

interference may confuse the energy detector [1].

In CEW domain, it is reasonable to assume a relatively low spectrum utilization

– namely, there will typically be only a limited number of actual narrowband signals

(either “friendly” or “potentially malicious”) in the received wideband signal at any

time instance. For this purpose, it is sufficient to implement a suboptimal thresholding
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algorithm, where CFAR or CDR performance is not necessarily achieved. Practical

experience has shown that threshold λ̂ may be adaptively set based only on the mean

value of the magnitudes of the scanned wideband signal, as:

λ̂ = 2 · 1

n

∑
|Y (n)| (6.2)

This step concludes the energy detection.

6.1.1.3 Analyze

Let us assume that as a result of the thresholding process, N frequency bins are

identified. For a system where M actual signals (N > M) are present, N − M

frequency bins would incorrectly be classified as signals. Then, simple thresholding

would result in the false alarm rate of N−M
N

.

For this reason, frequency bins corresponding to the same signal need to be

grouped together. For the ideal case (generic signals in high-SNR environments),

the simplest approach consists of grouping consecutive samples together and classify-

ing them as single waveforms. However, in most practical situations, some frequency

bins may have erroneous magnitude values as a result of imperfect sampling, and

would thus be discarded during the thresholding phase. For this purpose, the max-

imum acceptable distance (in Hz) between the two samples belonging to the same

waveform is defined, and it is a function of the frequency resolution of the FFT as

given by:

dMAX = K · df . (6.3)

Here, K is the estimate of a number of consecutive samples that could be erroneously

disregarded, and df is the frequency resolution of the FFT, defined as:

df =
2 · fmax
NS

, (6.4)

where fmax is the maximum resolvable frequency (which in case of Nyquist sampling

equals to half of the sampling frequency), and NS is the number of samples acquired

during the sampling process.

Then, grouped waveforms undergo smoothing, in order to alleviate impacts of

the imperfect and erroneous sampling. For achieving this, a moving average filter has

been implemented. For a waveform that consists of nM grouped bins with magnitudes

96



X1, ..., XnM
, filtering with the window length K results in:

Xfiltered(ni) =
1

K

i∑
j=i−K

Xj. (6.5)

So, each element is an average of its preceding K points.

Figure 6.2 illustrates the difference between the original transmitted signal (a),

sensed FFT bins (b), estimated signal after performing thresholding/bin grouping

(c), and the same signal after the smoothing (d).

Next, the waveform analysis is performed, i.e., for each of the identified nar-

rowband waveforms, relevant parameters are extracted. These parameters include

waveforms’ respective center frequencies, bandwidths, maximum values of their mag-

nitudes, and variance of their magnitudes. It is assumed that the algorithm has

an access to a database containing parameters of the “friendly” and/or “potentially

malicious” waveforms in the system.

Spectrum intelligence relies on the Naive Bayes classification to distinguish be-

tween the types of waveforms currently occupying the spectrum. The Naive Bayes

classification is a relatively simple, yet powerful classification method, based on Bayes

rule. Bayes rule is given as:

Pr(A|B) =
Pr(B|A) Pr(A)

Pr(B|A) Pr(A) + Pr(B|¬A) Pr(¬A)
, (6.6)

where Pr(A) is the prior probability, i.e., initial degree of belief in event A, Pr(¬A)

is the corresponding probability of the initial degree of belief against A, Pr(B|A) is

the conditional probability of event B given that A is true, Pr(B|¬A) is the condi-

tional probability of event B given that A is not true, and Pr(A|B) is the posterior

probability of A.

The Naive Bayes algorithm assumes that attributes are all conditionally indepen-

dent of one another, however it typically performs well even when the independence

assumption is not valid. The algorithm operates in two steps: training step, in which

the training data is used to estimate the parameters of a probability distribution,

and the prediction step, where posterior probability for every sample to belong to a

certain class is calculated. The class with the highest probability is assigned to the

tested sample.

A posterior probability that k is a result of the classification for an observation

(b1, ..., bp) is given as:

Pr(A = k|b1, ..., bp) =
Pr(B1, ...Bp|a = k)π(A = k)

Pr(B1, ...Bp)
, (6.7)
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where Pr(A = k|b1, ..., bp) is the conditional joint density of the predictors given

that they are in class k, π(A = k) is the class prior probability distribution, and

Pr(B1, ...Bp) is the joint density of the predictors.

Currently, the classification within the Spectrum Intelligence is binomial, however

it may straightforwardly be extended to support multinomial classification (e.g., in

order to account for different types of “friendly” waveforms). Result of the classifi-

cation is a set of “potentially malicious” and/or “friendly” waveforms in each cycle

of the algorithm. The reliable classification is of paramount importance to the suc-

cessful functioning of the overall algorithm. However, the classification results are

largely dependent on the features that the classifier is deploying. We consider a total

of three features that may be extracted for each of the identified waveforms: their

bandwidth, magnitude variance, and maximum value of the magnitude. In most

communication systems, the latter will typically be available only in several special

scenarios, such as when the cognitive receiver is able to correctly estimate the power

of the friendly/potentially malicious transmitter by obtaining information of its real

location and when there is no mobility nor significant changes in the direction of the

radiation patterns of the antennas.

The implemented waveform analysis technique is lightweight, and performs well

for systems with relatively low frequency resolution. Alternative, computationally

more expensive waveform analysis techniques, include cross-correlation in time do-

main; more comprehensive Statistical Signal Characterization (SSC) methods [10];

and cyclostationary detectors [14]. These are not analyzed within this work, however

they all impose themselves as viable future research topics.

Besides waveform identification and classification, the algorithm also recognizes

instantaneous spectrum holes. We define a spectrum hole as the channel where the

magnitudes of all of the corresponding FFT bins are below the energy threshold.

6.1.1.4 Learn

The algorithm then accesses the Temporal Frequency Map, where previous occur-

rences of spectrum activities are stored. The Temporal Frequency Map is a n × 3

matrix that keeps track of the number of occurrences of “friendly” waveforms (mF ),

“potentially malicious” waveforms (mPM) and spectrum holes (mSH) for each of the

n channels-of-interest, as illustrated in Table 6.1.

In each cycle, previous values are updated with the newly acquired and processed

information. This corresponds to the learning phase of the Cognitive cycle. Temporal
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Table 6.1: Temporal Frequency Map

Spectrum activity/CHANNEL 1 2 ... n 

Friendly mF/1 mF/2  mF/n 
Potentially malicious mPM/1 mPM/2  mPM/n 

Spectrum hole mSH/1 mSH/2  mSH/n 

 

forgiveness is implemented within the algorithm, i.e., spectrum activities correspond-

ing only to the last l spectrum readouts are taken into account while making future

decisions. This reduces the probability of data becoming obsolote, at the expense of

the lower amount of accessible information.

6.1.1.5 Act

Finally, based on the processed spectrum information, current transmission param-

eters (channel and power) and the history obtained from the Temporal Frequency

Map, the Cognitive Radio may decide to act in order to improve its chances of

reliable transmission. The actions include proactively changing the transmission fre-

quency (channel surfing), or increasing the transmission power whenever a threat has

been detected. A system is considered “under threat” when a “potentially malicious”

waveform has been identified on the channel proximate to the one currently used for

transmission. The new channel for the transmission is then chosen according to:

ct+1 ∈ (ct = SH | (X(ct) = min). (6.8)

This means that the new channel ct+1 is selected among all the channels ct that are

currently spectrum holes, such that the X(ct) is minimum. X(ct) represents the

expected channel reliability, defined as:

X(ct) = l2 ·mPM/ct + (l + 1) ·mF/ct −mSH/ct , (6.9)

where mPM/ct , mF/ct and mSH/ct represent the numbers of occurrences of the “poten-

tially malicious” waveforms, “friendly” waveforms and spectrum holes on the channel

ct over the last l steps, respectively. The coefficients l2 and (l + 1) are assigned in

order to give highest priority of action to avoiding channels with history of occur-

rences of “potentially malicious” waveforms, followed by the channels with history of

occurrences of “friendly” waveforms.

The new transmission power is chosen according to:
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Pt+1 ∈ P | PR > 10log10λ̂+ 3dB. (6.10)

Algorithm 1 provides the pseudocode of the Spectrum Intelligence algorithm.

Algorithm 1 Spectrum Intelligence – pseudocode

1: function Spectrum Intelligence
2: Train the classifier with relevant parameters for “friendly” and “potentially

malicious” waveforms
3: Initialize all channel states to “free”
4: Set the number of bursts to be acquired → k
5: Sample the wideband signal at or above Nyquist rate for all k bursts →
NS amplitude values

6: Data parsing → NS = 2x amplitude values
7: Perform FFT → NS

2
frequency binswithmagnitudesM

8: Calculate mean value of M →Mmean

9: Based on Mmean, set the energy threshold → λ̂
10: for i = 1 to nS

2
do (for each frequency bin)

11: if M(i) > λ̂ then
12: Bin i belongs to the signal
13: Change channel state of bin i to “occupied”
14: if any of M(i−K):M(i− 1) > MT then
15: Group these bins as a single waveform
16: Perform waveform smoothing
17: end if
18: end if
19: end for
20: Extract features of identified waveforms → bandwidth, center frequency,

maximumM, mean
21: Perform classification → waveform is either “friendly′′ or

“potentially malicious′′

22: Update Radio Frequency Map
23: If “potentially malicious” waveforms are near the current operating channel,

choose new TX frequency/power
24: end function

6.1.2 Implementation on the Cognitive Radio test bed

The proposed algorithm is implemented on the SDR/Cognitive Radio test bed archi-

tecture described in Chapter 4.

The spectrum acquisition process is detailed as follows: HandHeld’s (HH’s) 14-bit

Analog-to-Digital-Converter (ADC) performs sampling at 250 Msamples/s. When-
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ever a GET_SpectrumSnapshot command is invoked, a burst of 8192 consecutive sam-

ples is buffered, and then outputted over the serial port at 115200 bauds to the

System-on-Module (SoM), which is executing the Spectrum Intelligence algorithm.

There, the samples, corresponding to 120 MHz around the center carrier frequency of

the radio, are parsed, transformed into the frequency domain using the Fast Fourier

Transform (FFT), and subsequently analyzed by the implemented energy detector.

Alternatively, in order to increase the accuracy, several consecutive spectrum bursts

can be FFT-ed, averaged and analyzed together. The spectrum sensing and the Spec-

trum Intelligence as a whole is a quiet process, i.e., the HH is able to transmit/receive

data at all times. Controlled environment achieved by the coaxial implementation

allows us to assume high coherence time of the analyzed frequency band, i.e., while

performing the averaging of consecutive spectrum readouts, temporal variability of

the channel may be disregarded. We acknowledge, however, that in case of the over-

the-air transmission, nature of the wireless medium would not allow us to make such

assumption. In order to obtain higher FFT frequency resolutions, necessary modi-

fications to the equipment would include increasing the buffer size on the HH, and

finding ways to transfer spectrum data at higher baud rate than is currently sup-

ported. Alternatively, appropriate techniques that estimate the temporal variability

of the channel would need to be deployed.

The FFT-ed data is then further analyzed by the Spectrum Intelligence algo-

rithm, as explained in Sections 6.1.1.2 – 6.1.1.5. The output of the algorithm is the

transmission frequency and the transmission power to be deployed in the next cycle.

These values are executed at the end of the Spectrum Intelligence cycle by issuing an

appropriate SET command.

As explained in Section 4.2.1, HH provides support for reconfigurability of its

transceiving parameters by means of the Simple Network Manager Protocol (SNMP)

v3. The implementation is done in the following way: whenever the Spectrum In-

telligence algorithm decides on a new transmission frequency/power, the algorithm

running on the SoM invokes the appropriate SNMP command. Each SNMP command

(SET_RFchannel or SET_TXpower) is characterized by the corresponding unique Ob-

ject IDentifier (OID) and the new value of the parameter. OIDs and the respective

values that each object can take are stored in the Management Information Base

(MIB) on the HH. Once that the HH receives the SET request, it accesses the MIB,

checks whether the requested value of the object is defined in MIB and, if so, changes

the corresponding parameter. This finishes one cycle of the Spectrum Intelligence

algorithm. Change of the transmission parameters occurs in every cycle in which the
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Spectrum Intelligence has detected a “potentially malicious” waveform on a channel

proximate to the one that HH currently uses for transmission.

The SNMP commands needed for successful execution of the Spectrum Intelligence

algorithm are summarized in Figure 6.3.

Figure 6.3: Relevant SNMP commands HandHeld–SoM for Spectrum Intelligence
algorithm

6.2 Experimental results and major findings

Performance of the overall Spectrum Intelligence algorithm depends mainly on the

accuracy of the energy detection and waveform classification phases. In order to

evaluate the performance of these functionalities, a set of experiments is performed

using the test bed architecture.

SelfNET Soldier Broadband Waveform (SBW), representing the “potentially ma-

licious” waveform, is continuously transmitted on the fixed carrier frequency. SBW

is a wideband digital waveform whose bandwidth was set to 1.25 MHz bandwidth,

operable in VHF [30–88] MHz and UHF [256–512] MHz parts of the frequency band.

When operating in VHF, a direct conversion principle is utilized, and the scanned fre-

quency band always corresponds to the baseband, i.e., [0–120] MHz. When operating

in UHF, superheterodyne principle is used, and the frequency band that is scanned
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depends on the center carrier frequency fc that the HH is operating on – namely,

analyzed band corresponds to [fc − 35, fc + 85] MHz. Vector signal generator is used

to create and inject the “friendly” waveforms into the channel, emulating friendly

communication. In addition, for the ease of analysis, all other sensed signals that do

not correspond to the “potentially malicious” waveform are considered as “friendly”.

Hence, the task of the classifier is to successfully discriminate between the “potentially

malicious” and “friendly” waveforms, based on the extracted features.

For the experiments, we utilize the VHF part of the transmission band where the

radios are operable, meaning that the spectrum sensing is performed for the frequency

band [0–120] MHz. SBW signal representing the “potentially malicious” waveform

is transmitted at the center carrier frequency 51 MHz, for two varying transmission

powers. The transmission power −7 dBm (100 spectrum bursts) represents the sit-

uation where the received power of the “potentially malicious” waveform is similar

to the power of the “friendly” waveforms in the system. The transmission power

−3 dBm (100 spectrum bursts) represents the case where the “potentially malicious”

waveform has significantly higher power than the rest of the waveforms in the system.

The goal is to quantify the potential discriminative quality of the expected received

magnitude as a classification feature.

For each of the cases, the Naive Bayes classifier is trained with half of the overall

data set (50 bursts for each transmission power), and the other half (50 bursts for

each transmission power) is used for the testing. The idea is to observe how different

combinations of the available features influence the performance of the classifier.

The first set of experiments corresponds to the transmission power of −7 dBm.

Figures 6.4 and 6.5 shows scatter plots for all the combinations of the considered

features.

The blue dots represent the samples of the “friendly” waveforms, and the red

circles are the samples of the “potentially malicious” waveforms used for the training

phase of the classifier. The green crosses represent all waveforms classified as “poten-

tially malicious” in the testing phase, whereas the green squares correspond to the

actual “potentially malicious” waveforms in the testing phase.

A more comprehensive insight into the results of the classification performance is

given by the confusion matrices shown in Table 6.2.

Ideally, waveform analysis should classify only the SBW waveform as the “po-

tentially malicious” waveform in every analysis cycle (true positives). However, as

seen from the matrices, the analysis procedure will occasionally erroneously classify
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Table 6.2: Confusion matrices for −7 dBm transmission power

 Pot. malicious Friendly  

Pot. malicious 46 4  
Bandwidth + amplitude + variance Friendly 44  1887

Pot. malicious 47 3  
Bandwidth + amplitude Friendly 40  1897

Pot. malicious 42 8  
Amplitude + variance Friendly 55  1876

Pot. malicious 45 5  
Bandwidth + variance Friendly 27  1904

 

“friendly” waveforms as “potentially malicious”, and vice versa. These classification

results are directly dependent on the following factors:

• Energy detection threshold, λ̂ – inappropriately low threshold may result in

grouping too many of the adjacent bins (some of which actually correspond to

noise) as single waveforms, consequently increasing the estimated bandwidths

of these waveforms;

• Estimated number of consecutive samples that could be erroneously disregarded,

K – overly low K may result in single waveforms being erroneously recognized

as different waveforms on adjacent frequencies; overly high K may result in

waveforms on adjacent frequencies being erroneously grouped as single wave-

forms;

• Similarity in the parameters between different waveforms present in the com-

munication system that are subjected to classification;

• Discriminative values of the features used for classification;

• Number of training samples.

The first two points are defined according to Equations (6.2) and (6.3) respec-

tively, with K = 3 heuristically shown to give the most satisfying performance. The

number of training samples is fixed and is comprised of all the waveforms present

in 50 spectrum bursts. In each training burst, there is one “potentially malicious”

waveform injected on a known channel, and a varying number of other waveforms on

other channels. Hence, it is interesting to focus the analysis on the discriminative
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values of the used features. The best results are offered by the combination of the

bandwidth and the amplitude of the signals. This is closely followed by analyzing all

3 features together. However, in many real-life systems, it is not reasonable to ex-

pect that the classifier has the information corresponding to the waveforms’ received

magnitudes, since this information will typically not be known a-priori and may be

highly time-variant. For this reason, a good performance exhibited by the classifier

that discriminates between the waveforms based on the bandwidth and the variance

of the signal is of particular importance.

The experiments are then repeated for the case when the transmission power of

the “potentially malicious” waveform equals to −3 dBm. Figures 6.6 and 6.7 and

Table 6.3 show the results.

Table 6.3: Confusion matrices for −3 dBm transmission power

 Pot. malicious Friendly  

Pot. malicious 50 0  
Bandwidth + amplitude + variance Friendly 17  1862

Pot. malicious 50 0  
Bandwidth + amplitude Friendly 4  1875

Pot. malicious 48 2  
Amplitude + variance Friendly 28  1851

Pot. malicious 50 0  
Bandwidth + variance Friendly 17  1862

 

The best performance both in the terms of the true positives rate and the false

negatives rate for both classes is achieved by the classifier utilizing the combination

of signal’s bandwidth and amplitude as the classification features. As expected, in

environments where one of the waveforms has a significantly higher received power,

using the power/amplitude of the received signal is a particularly good classification

feature.

Finally, we measure the execution time of the Spectrum Intelligence algorithm for

a single cognitive cycle. The results are shown in Figure 6.8.

The full blue line shows the computational time of the Process–Compress–Analyze–

Learn–Decide phase of the Spectrum Intelligence, corresponding to all the processes

that are running on the SoM. Computational times of the whole cognitive cycle,

including the sensing time and the time needed to deploy the appropriate SNMP

command on the radio are represented by the dashed red line. Sensing time takes
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Figure 6.8: Execution time of the Spectrum Intelligence algorithm
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approximately 3 seconds per burst, whereas invoking and executing the SNMP com-

mand takes approximately 1.3 seconds. In case of channel surfing, additional fre-

quency settling time of the HH is negligible, and corresponds to 40 microseconds.

The measurements are performed for different number of bursts that are averaged

and analyzed together. Whereas analyzing the average FFT values of multiple bursts

may slightly improve the overall detection accuracy, it compromises real-time execu-

tion of the algorithm.

The performance of the Spectrum Intelligence algorithm as a whole depends pri-

marily on the jamming tactics deployed by the adversaries, as well as on the system

parameters, such as number of available channels for frequency hopping, and success-

ful classification of these channels as spectrum holes depending on the occurrences of

“friendly”/other waveforms in the system. Against naive narrowband jamming en-

tities that change their transmission frequency slowly, Spectrum Intelligence proffers

next to an infallible strategy for jamming evasion. However, against more advanced

opponents that are able to adapt their tactics as fast as the Spectrum Intelligence

algorithm, the performance still needs to be evaluated.
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6.3 Further refinements to the Spectrum Intelli-

gence algorithm

The Spectrum Intelligence is designed as a scalable algorithm that may relatively

easily be embodied with new functionalities. In this section, we consider two of the

refinements to the system that are currently in the implementation phase: compressed

sensing and support for the human-in-the-loop.

Compressed sensing is currently implemented in the processing phase of the al-

gorithm, i.e., running on the System-on-Module. However, the future intention is to

implement it directly on the FPGA of the HH, prior to outputting the samples to the

SoM.

A graphical user interface that enables the human operator to override decisions

of the Spectrum Intelligence was developed. The ultimate goal is to embody the

Spectrum Intelligence algorithm with the capabilities of cognitive refinement, i.e., the

ability to incorporate decisions of the human operator in order to refine its reasoning

mechanism.

6.3.1 Compressed Sensing

The major bottleneck of the current implementation of the Spectrum Intelligence is

low frequency resolution, caused by the small buffer size on the HH’s FPGA and the

limited data rate supported by the serial transmission. This has led us to perform

an analysis of the Compressed Sensing methods. The main idea is to increase the

frequency resolution of the system by performing the Compressed Sensing directly

on the HH’s FPGA, filling the buffer with compressed samples, and then outputting

them to the SoM for analysis.

Compressed Sensing (CS) [7] has become a popular research topic in the signal

processing research community over the recent years. Contrary to the conventional

methods that rely on Nyquist-or-above sampling rates, CS techniques show that it is

possible to estimate the original signal even with sub-Nyquist rate sampling, provided

that certain conditions are met. Namely, in order to be estimated or reconstructed in

a satisfying manner, the signals subjected to CS need to be sparse. Since RF spectrum

is by and large underutilized most of the time, sparsity is generally inherent to scanned

wideband RF spectrum. The system model of the implemented CS technique, along

with the preliminaries of CS along the lines of [18], [12], are given as follows.
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The time-domain representation of the wideband signal received at the HH is

given by:

r(t) = h(t) ∗ s(t) + w(t), (6.11)

where h(t) is the channel coefficient between transmitting HH and receiving HH, s(t)

denotes the transmitted signal, ∗ denotes the convolution operation and w(t) is the

Additive White Gaussian Noise (AWGN) with zero mean and power spectral density

σ2
w.

In order to observe the frequency response of the received signal, an N -point FFT

is taken on r(t) to collect the frequency-domain samples into an Ns × 1 vector rf , as

follows:

rf = Dhsf + wf , (6.12)

where Dh = diag(hf ) is an Ns ×Ns diagonal channel matrix, and hf , sf and wf are

the discrete frequency-domain samples of h(t), s(t) and w(t), respectively. In general

form, this signal model can be expressed as:

rf = Hfsf + wf (6.13)

From the above expression, we can observe that the spectrum sensing task requires to

estimate sf in (6.13), provided that we have Hf and r(t). Since we have a wideband

signal at our disposition, we can take advantage of the CS theory to relieve high

sampling rate (Nyquist rate or above) ADC requirements. Various computationally

feasible algorithms, such as Basis Pursuit (BP) [2] and Orthogonal Matching Pursuit

(OMP) [15], were developed to reliably estimate the received signal sampled at sub-

Nyquist rate.

We start by collecting the compressed time-domain samples at the receiver. For

this, a compressed sensing matrix Sc is constructed to collect a K × 1 sample vector

xt from r(t) as follows:

xt = Scrt, (6.14)

where rt is the Ns × 1 vector of discrete-time representations of r(t) at the Nyquist

rate with K ≤ Ns, and Sc is the K×Ns projection matrix. There are various designs

introduced in the literature for compressive samplers, such as non-uniform samplers

[9] and random samplers [17], [11].

Noting that rt = F−1M rf , and given K compressed measurements, the frequency

response sf from (6.13) can now be estimated as follows:

xt = STc F−1M Hfsf + w̃f , (6.15)
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where w̃f = STc F−1M wf is the noise sample vector which is white gaussian. The sparsity

of the signal vector sf is measured by p-norm ||sf ||p, p ∈ [0, 2), where p = 0 indicates

exact sparsity.

Thus, equation (6.15) is a linear regression problem with signal sf being sparse.

The signal sf can be reconstructed by solving the following linear convex optimization

problem:

min
sf
||sf ||1, s.t. xt = STc F−1M Hfsf (6.16)

There are several existing methods to solve this optimization problem, for example, by

means of convex programming as in BP [2] method, or by using the greedy algorithms

such as MP [8] and OMP [15].

We can assess performance of the considered CS algorithm on the data used in

Section 6.2. The results for different levels of compression ratios, for the case when

the transmission power of the “potentially malicious” waveform is −3 dBm and the

classifier is able to use all 3 features, are shown in Table 6.4. As a reference, com-

pression ratio of 75% means that the CS is performed on 75% of the original samples

(sampled at 250 MSamples/s).

Table 6.4: Confusion matrices for−3 dBm transmission power: Compressed Sampling

 Pot. malicious Friendly Compression ratio 

Pot. malicious 50 0  
75% Friendly 15  1960

Pot. malicious 50 0  
50% Friendly 14  2180

Pot. malicious 48 2  
25% Friendly 24  3442

Pot. malicious 46 4  
10% Friendly 18  1499

Pot. malicious 25 25  
5% Friendly 26  487

 

Very good performance in the rate of true positives for the “potentially malicious”

waveform is obtained even for low compression ratios, strengthening the motivation

for further research on this topic. The true positives rate for the “friendly” waveforms

should, however, be explained since, as can be seen from the table, the number varies

significantly based on the compression ratio of the CS. As the compression ratio
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starts to decrease, the number of friendly waveforms detected in the system increases,

however at a certain level, this number starts decreasing drastically again. To explain

this phenomenon, we show the reconstructed wideband spectrum for the compression

ratios of 75% and 10% in Figure 6.9.

According to the theory of CS, when the signal is sparse, the random sampler tries

to take more samples from the non-zero elements and less samples from the zero ele-

ments. For this reason, the waveforms with higher bandwidths, such as the injected

SBW waveform, will be reconstructed in a better manner than the narrowband wave-

forms. Since the “friendly” waveforms in our system are typically narrowband signals

(e.g. in the 98–105 MHz part of the band, they correspond to the FM radio transmis-

sion), their samples will often not be successfully reconstructed. For relatively high

compression ratios, the system will in turn classify the same narrowband waveform

split in multiple segments as multiple separate friendly waveforms, hence the initial

increase in the true positives rate. For low compression ratios, magnitude values for

most of these signals will be completely discarded, and simply treated as noise.

The additional computations introduced by the compressed sensing inherently

prolong the execution time of the algorithm. Figure 6.10 presents the comparison

of execution times for Spectrum Intelligence running CS with different compression

ratios and the case when no compression is taking place, for analysis of single sensing

burst.

6.3.2 Support for a human-in-the-loop

Another application of interest is the support for a human operator in the anti-

jamming system. For this reason, a graphical user interface (GUI) was developed

for the Spectrum Intelligence algorithm, which allows the human operator to overrule

decisions of the algorithm. Screenshot of the interface is shown in Figure 6.11.

The interface is designed to continuously invoke GET_Batterystatus and

GET_Spectrumdata over the predetermined port from the server (typically running

on the SoM), automatically refreshing the display every time a command is executed.

Three SET commands, namely SET_RFchannel, SET_TXpower and SET_RFOn/Off

allow the human operator to change the operating frequency, transmission power, and

turn the RF front-end on and off, respectively. The upper right part of the screen

shows the status of the connection with other HH radios in the system. Whenever the

HH running the GUI is not able to “ping” the other radios in the system, the “Remote

link” status turns red, thus signaling to the human operator that the communication

link is currently disabled.
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Figure 6.9: Reconstructed spectrum for compression ratios: (a)75%, (b)10%
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Figure 6.10: Execution time of the Spectrum Intelligence algorithm with compressed
sensing – 1 burst
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As of now, the role of the developed GUI is to allow the human operator to

take decisions irrespectively of the decisions of the Spectrum Intelligence algorithm.

However, it also presents an interesting motivation for considering cognitive refine-

ment principles, i.e., refining the policy-based reasoning behaviour of the algorithm

by learning from the actions of the operator.

6.4 Conclusions

This chapter described some of the impacts that Cognitive Radio technology may have

in designing advanced communications electronic warfare systems. The central focus

of the chapter was on presenting the ideas, development and implementation aspects

of the Spectrum Intelligence algorithm for Interference Mitigation. The algorithm

is based on learning capabilities and on-the-fly reconfiguration of the transmission-

related parameters characteristic to Cognitive Radio technology. Implementation of

the algorithm was done on the SWAVE HandHeld – a military Software Defined Ra-
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Figure 6.11: Screenshot of the Graphical User Interface

dio – interconnected with the computationally powerful System-on-Module. Perfor-

mance of several crucial functionalities of the algorithm was evaluated and presented.

Main identified challenges included: finding an optimal algorithm for adaptive en-

ergy detection thresholding; an optimal set of features for waveform classification,

and achieving reasonable execution time. A sub-optimal thresholding approach was

heuristically shown to give satisfactory results for the observed use cases. A Naive

Bayes classifier is able to discriminate between the waveforms in the systems with

high success rate, and the overall algorithm is able to be executed in real time.

Whereas Spectrum Intelligence can be considered a fully functional prototype in

its present state, several interesting topics remain open for future research. These in-

clude deployment of Compressed Sensing in the pre-processing stage of the algorithm

[12], support for the cooperation between multiple receivers running the Spectrum

Intelligence, and support for cognitive refinement of the algorithm by learning from

the human operator in the loop. Another interesting future research point involves

combining the information obtained from spectrum sensing and analysis with the

information available from local or global geolocation-based databases, in order to

improve the spectrum awareness and increase the performance of the overall anti-

jamming system.
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Chapter 7

A game-theoretical approach to
evaluating intelligent RF
jamming/anti-jamming techniques

Radio Frequency (RF) jamming attacks may be defined as illicit transmissions of

RF signals aimed at disrupting the normal communication on the targeted chan-

nels. Adversaries that utilize the Cognitive Radio learning mechanisms to improve

their jamming capabilities are considered intelligent. Intuitively, being equipped with

such learning mechanisms may also aid the legitimate users in improving their anti-

jamming capabilities. The goals of legitimate transceivers and jammers are typically

negatively correlated. This allows us to use game theory – a mathematical study

of decision-making in situations involving conflicts of interest – as a tool for math-

ematical formalization of the Intelligent Jamming problems. This chapter explores

how game theory can be used to analyze the jamming/anti-jamming behaviour be-

tween Cognitive Radio systems. A non-zero-sum game with incomplete information

on opponent’s strategy and payoff is modelled as an extension of Markov Decision

Process. Learning algorithms based on adaptive payoff play and fictitious play are

considered. A combination of frequency hopping and power alteration is deployed as

an anti-jamming scheme. The SDR/Cognitive Radio test bed architecture described

in chapter 4 is used in order to perform measurements useful for quantifying the jam-

ming impacts, as well as to infer relevant hardware-related properties. Results of these

measurements are then used as parameters for the modelled jamming/anti-jamming

game and are compared to the Nash equilibrium of the game [6].
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7.1 Preliminaries of game theory

Prior to explaining the proposed game-theoretical framework, we briefly introduce

the most important concepts related to game theory.

Game theory is a mathematical model that analyzes the strategic interactions

between multiple rational agents. Its foundations were laid in the 1944 book Theory of

Games and Economic Behavior by J. von Neumann and O. Morgenstern, which dealt

with finding optimality criteria for particular cases of two-person zero-sum games.

In 1951, J. Nash introduced the concept of Nash Equilibrium (NE), extending the

previous discoveries to more general cases of non-zero-sum games. Since then, game

theory continues to be an important tool for analysis of situations involving conflicts

of interest in many different fields, including information systems.

Among several possible categorizations of game theory, one of the principal ones

distinguishes cooperative vs. non-cooperative game theory. The former deals with

finding optimal solutions of dividing the proceeds among members of coalitions, i.e.,

it considers games where the agents (players) can make binding mutual agreements.

The latter, conversely, considers the games where the agents make their decisions and

devise their strategies independently, and represents the branch of game theory that

we are interested in.

Game is the formal model of an interactive situation, and it involves two or more

players. The game is played in a sequence of steps where, at the end of each step, every

player receives an immediate payoff and chooses an action for the next step. The

number of actions that each player may take is limited. The set of actions that each

player takes, depending on the previously received payoffs and/or the history of the

actions of the opponent, comprise his strategy. The strategy can be pure or mixed. A

central concept in game theory is represented by Nash equilibrium – a set of strategies

of all the players involved in the game such that no player can directly benefit from

unilaterally deviating from the Nash equilibrium strategy. Two important questions

that are usually addressed when considering games is: i) “does the game have a Nash

equilibrium?”, and ii)“is the Nash equilibrium unique?”. Nash equilibrium is formally

introduced in Section 7.2.3.

7.2 A proposed game-theoretical approach

Most of the previous works in the literature on application of game theory to jamming

problems, some of which were described in Section 2.2.3, consider either channel surf-
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ing or power allocation as anti-jamming strategies. Furthermore, they are mutually

differentiated mostly by the objective function subjected to optimization (Signal-to-

Noise Ratio, Bit Error Rate, Shannon capacity); various forms of uncertainty (user

types, physical presence, system parameters); game formulation (zero-sum vs. non-

zero-sum, single-shot vs. dynamic), learning algorithms (Q-learning, SARSA, policy

iteration), etc.

We summarize the contributions and novelties of our approach with respect to the

state-of-the-art contributions on the application of game theory to intelligent jamming

scenarios as follow:

• We present the ideas of learning algorithms that correspond to Cognitive Radios

with and without spectrum sensing capabilities, comparing their performance.

• We compare the performance of the considered learning algorithms for the mod-

eled game with the Nash equilibrium of the game.

• We consider an increased action space created by combining two anti-jamming

tactics.

• We use real-life SDR/Cognitive Radio platform to infer parameters that allow

modeling the game in a more realistic manner.

7.2.1 System model

Consider a simplistic two-way transmitter-receiver communication occurring over one

of the nf pre-defined channels and a malicious user (jammer) that is trying to disrupt

the communication by creating narrowband interference. Transmitter and receiver are

considered the primary users over all of the considered channels and are able to tune

to the same channel at a given time instance. Without the loss of generality, all of

the channels are modelled with the same parameters; however, it will become obvious

that the proposed anti-jamming techniques would be able to indirectly infer different

channel parameters and fit these inferences into their decision-making process.

Jammer is able to create narrowband interference on a single channel at a time,

causing the deterioration of the Signal to Interference plus Noise Ratio (SINR) and

subsequently increase of the Bit Error Rate (BER) on that channel. It is assumed that

the jamming attack is the only possible reason for the deterioration of the channel

quality, neglecting other possible sources of interference, as well as the time-varying

nature of channels, including effects of the multipath propagation.
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To mitigate the jamming effects and increase the SINR at the receiver side over the

threshold needed for successful decoding, the transmitter may deploy a combination

of channel hopping and increasing its transmission power (power alteration).

Both the transmitter and the jammer are able to make use of the on-the-fly re-

configurability as well as the learning prospectives of the Cognitive Radio technology.

Under different studied scenarios, both the transmitter and the jammer may have dif-

ferent spectrum sensing capabilities. Following that, two different learning algorithms

are studied: Payoff-Based Adaptive Play (PBAP), where players are not necessarily

embodied with spectrum sensing, and fictitious play, where players are able to infer

the actions of the opponent in each step as a result of the deployed spectrum sensing

scheme. In addition, performance of the proposed jamming/anti-jamming schemes is

evaluated against static, non-learning types of opponents.

Other assumptions and abstractions that were taken in order to take a game-

theoretical approach to jamming/anti-jamming problem are given as follow:

• Considered channels are perfectly orthogonal, non-overlapping, with frequency

spacing between them large enough to make any energy spillover negligible.

• A discrete number of transmission powers were considered for both the trans-

mitter and the jammer.

• Following the previous assumption, occurrence of jamming is modelled as a

discrete event, i.e., it always occurs with success or failure, disregarding the

typical stochastic processing involved with the occurrence of jamming 1.

• Both the transmitter and the jammer are in continuous transmission mode, i.e.,

they always have packets ready to send.

• Jammer is able to create interference powerful enough to successfully jam com-

munications when the transmitter is transmitting with its maximum transmis-

sion power (provided that they are both transmitting on the same channel at

the time).

• All players maintain their relative positions as well as antenna orientations with

respect to each other.

1This assumption may be built upon the existence of the threshold effect, characteristic for digital
communication systems, where there is a certain SINR below which the BER significantly rises, and
the communication systems perform poorly [15].
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7.2.2 Game formulation

The attack and defense problem is modelled as a multi-stage proactive jamming/anti-

jamming stochastic game. A stochastic game [10] is played in a sequence of steps,

where at the end of each step, every player receives a payoff for the current step and

chooses an action for the next step that is expected to maximize his payoff. A player’s

payoff in each step is determined not only by his action but also by the actions of

all the other players in the game. Collection of all of the actions that a player can

take comprise his (finite) action set. The distribution of player’s choices of actions

constitute his strategy. The strategy may be fixed or it may be updated according to

the deployed learning algorithm.

The proposed game is an extension of Markov Decision Process (MDP), whose

state transition probabilities may be depicted as finite Markov Chains.

The modelled game consists of two players: Transmitter T and Jammer J . At

the end of each step, every player observes his payoff for the given step and decides

either to continue transmitting with the same power and at the same frequency or

to change one of them, or both. The payoff consists of a summation of reward

for the successful transmission (jamming), penalty for the unsuccessful transmission

(jamming), and negative values related to cost of transmission (jamming) and cost of

frequency hopping. Transmission (jamming) cost is related to the power spent by the

user for transmitting (jamming) in a given step. Hopping cost may be explained by

the fact that, after changing the channel of the transceiver pair (jammer), a certain

time elapses before the communication may be resumed (interference created) due to

the settling time of the radios or due to other hardware constraints.

A generalized payoff at the end of the step s for the transmitter T is expressed as

(7.1). Here, RT denotes the reward for successful transmission, XT is the sustained

fixed penalty for the unsuccessful transmission, H is the hopping cost, g(CT ) is a

function that expresses the transmitter’s cost of transmission when power CT (CT ≤
TMAX) is used, fT is the channel currently used by the transmitter–receiver pair,

α = 1 if transmission is successful and α = 0 if not, and β = 1 if the transmitter

decides to hop and β = 0 otherwise. In this notation, subindices are used to denote

steps, and superindices to denote the players.

P T
s (CT

s , f
T
s , C

J
s , f

J
s ) = RTα−XT (1− α)−H · β − g(CT

s ) (7.1)

Similarly, the jammer J ’s generalized payoff for the step s is given as (7.2). Here,

RJ is the jammer’s reward for successful jamming, XJ is the sustained fixed penalty
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for the unsuccessful jamming, g(CJ) is the jammer’s cost of transmission when power

CJ is used. Finally, γ = 1 if the jammer decides to hop and γ = 0 if it does not.

P J
s (CT

s , f
T
s , C

J
s , f

J
s ) = RJ(1− α)−XJα−Hγ − g(CJ

s ) (7.2)

We next provide a motivation for our game formulation by first considering a naive

deterministic game where the players are initially taking their decisions retroactively,

and do not deploy any learning mechanism. In such an example, at the end of every

step s, each player observes his current payoff, transmission power and transmission

frequency. In case that the players were transmitting at the same frequency, the

transmitter is also able to estimate the jammer’s transmission power – presumably

calculated from the SINR obtained at the receiver – whereas the jammer is always

able to estimate the transmitter’s power as well as transmission frequency using the

spectrum sensing mechanism. Then, given these observations, each player devises an

action that will maximize his payoff in the next state. It is easy to show that the

problem comes down to a simple ternary decision. Each case denotes a simplified

action set for the transmitter (7.3) and jammer (7.4) as (power, frequency): keep

and stay (KS), restart and change (RC), increase and stay (IS). The magnitude

of the power increase ∆CT is the minimum increase that the transmitter needs to

invest in order to get the SINR at the receiver side over the threshold that guarantees

successful decoding. Correspondingly, increase of the power for the jammer relates to

the minimum level of additional invested power required to ensure successful jamming

on a given channel.

ATs+1 =



(KS), if α(s) = 1

(RC), if α = 0 and (H < CT
s + ∆CT or

CT
s + ∆CT > TMAX)

(IS), if α = 0 and (H ≥ CT
s + ∆CT and

CT
s + ∆CT ≤ TMAX)

(7.3)

AJs+1 =


(KS), if α = 0

(RC), if α = 1 and fTs 6= fJs
(IS), if α = 1 and fTs = fJs

(7.4)

However, deploying the simple learning mechanisms on either (or both) of the

sides would allow the players to take more advanced decisions, thus exploiting the

decisions of the opponent. Illustratory example of gradual evolution of the game when
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such an arms race is present is shown in Figure 7.1. In order to simplify analysis,

only two hopping channels are considered, and are denoted by f1 and f2.

J J J

T

J J

T

J

T T T

s1 s2 s3 T T

T

T T

T Learns J Learns

f2

Time 2 Time 3 Time 4 Time 5

f1

P

Time 1

No Learning T Learns J Learns

} } }

} } } } }
} } } } }

}

...

}
}

Figure 7.1: Illustration of the arms race of the players’ learning mechanisms.

In time 1, both players observe whether their action in the given step brought them

positive payoff. If so, they choose the action (KS) for the following step, otherwise

they keep increasing their transmission powers by ∆CT (transmitter) or ∆CJ (jam-

mer). This is repeated for as long as CT
s+1 < H and CT

s+1 ≤ TMAX . State of the system

is illustrated as T when transmission is successful and J when jamming is successful.

Then, at time 2, the transmitter decides to switch to another frequency. However, by

observing the jammer’s behaviour in time 1, it also realizes that better result would

be yielded by proactively increasing its transmission power by two discrete increments

in every step. When cost of the transmission has once more risen above the cost of

hopping, the transmitter will hop back to frequency 1. In time 3, the jammer will

observe this pattern and will decide to increase the probability of successful jamming

by proactively increasing its transmission power in each step by 3 increments. Intu-

itively, the game will eventually evolve towards proactive hopping and transmitting

with maximum power in every step. However, the players can achieve even better

payoffs by observing the overall history of their previously obtained payoffs for any

given action, and/or the history of the actions of the opponent, and incorporating

these observations into their decision-making process. This corresponds to players

deploying one of the learning algorithms explained in Section 7.2.4.

127



7.2.3 Equilibrium analysis of the game

Nash equilibrium is inarguably the central concept in game theory, representing the

most common notion of rationality between the players involved in the game. It is

defined as the set of distributions of players’ strategies designed in a way that no

player has an incentive to unilaterally deviate from its strategy distribution.

Let nf be a discrete number of channels available to both players for channel

hopping, and let nCT and nCJ be the discrete number of transmission power for the

transmitter and the jammer, respectively. For the game with nf · nCT (nCT = nCJ )

pure strategies available to each player, we define ST as the set of pure strategies

of the transmitter and SJ as the set of pure strategies of the jammer. Then, x ∈
RST

and y ∈ RSJ
represent the mixed strategies of the transmitter and jammer,

respectively. By denoting the payoff matrices of the transmitter and the jammer as A

and B, respectively, a best response to the mixed strategy y of the jammer is mixed

strategy x∗ of the transmitter that maximizes its expected payoff x∗ᵀAy. Similarly,

the jammer’s best response y∗ to the transmitter’s mixed strategy x is the one that

maximizes xᵀBy∗. A pair (x∗, y∗) that are best responses to each other is a Nash

equilibrium of the bimatrix game, i.e., for any other combination of mixed strategies

(x,y) the following equations hold true:

xAy∗ᵀ ≤ x∗Ay∗ᵀ, (7.5)

x∗Byᵀ ≤ x∗By∗ᵀ. (7.6)

In 1951, Nash proved that all finite non-cooperative games have at least one mixed

Nash equilibrium [12]. Particularization of this proof for bimatrix games may be given

as follows [14]:

Let x and y be arbitrary pairs of mixed strategies for the bimatrix game (A,B),

and Ai· and B·j represent the i-th column and the j-th row of the matrices A and B,

respectively. Then,

ci = max {Ai·yᵀ − xAyᵀ, 0} , (7.7)

dj = max {xB·j − xByᵀ, 0} , (7.8)

x′i =
xi + ci

1 +
∑

k ck
, (7.9)

y′j =
yj + dj

1 +
∑

k dk
. (7.10)
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Since T (x,y)=(x′,y′) is continuous and x′ and y′ are mixed strategies, it can be shown

that (x′,y′)=(x,y) if and only if (x,y) is an equilibrium pair. Furthermore, if (x,y) is

an equilibrium pair, then for all i:

Ai·y
ᵀ ≤ xAyᵀ, (7.11)

hence ci=0 (and similarly dj=0 for all j), meaning that x′=x and y′=y. Assume now

that (x,y) is not an equilibrium pair, i.e., there either exists x such that xAyᵀ > xAyᵀ,

or there exists y such that xByᵀ > xByᵀ. Assuming the first case, as xAyᵀ is a

weighted average of Ai·y
ᵀ, there must exist i for which Ai·y

ᵀ > xAyᵀ, and hence some

ci > 0, with
∑

k ck > 0. As xAyᵀ is a weighted average of Ai·y
ᵀ, there must exist

Ai·y
ᵀ ≤ xAyᵀ for some i such that xi > 0. For this i, ci = 0, hence:

x′i =
xi + ci

1 +
∑

k ck
< xi, (7.12)

and so x′ 6= x. In the same way, it can be shown that y′ 6= y, leading to the

conclusion that (x′, y′) = (x, y) if and only if (x, y) is an equilibrium. As the transfor-

mation T (x, y) = (x′, y′) is continuous, it must have a fixed point, and so by applying

Brouwer’s fixed point theorem [2], it follows that this fixed point indeed represents

an equilibrium point. This concludes the proof of the existence of mixed-strategy

equilibrium points in a bimatrix game.

However, efficient computation of equilibria points, as well as proving uniqueness

of an equilibrium, remains an open question for many classes of games. Lemke-

Howson (LH) [18] is the most well-known algorithm for the computation of Nash

equilibria for bimatrix games and is our algorithm of choice for finding the Nash

equilibrium strategies. A bimatrix game requires the game to be fully defined by two

payoff matrices (one for each player). Since in our case the immediate payoff of every

player in each step depends not only on his own action and the action of the opponent

but also on the previous state of the player (influence of the hopping cost), our game

as a whole cannot be represented by two deterministic payoff matrices. For this

reason, we divide the game into nf · nCT subgames, where each subgame corresponds

to a unique combination of possible states of the transmitter and the jammer. Since

each subgame can be treated as the separate game in a bimatrix form, we proceed to

apply the LH method to find mixed strategy Nash equilibriums (one per subgame).

Hence, in each step, every player plays an equilibrium strategy corresponding to that

step. A union of equilibria strategies of all the nf · nCT combinations of the states

within the game represents the Nash equilibrium of the game.
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Gambit [9], an open-source collection of tools for solving computational problems

in game theory, was used for finding equilibrium points using the LH method. For

details on the implementation of the LH algorithm, an interested reader is referred

to [19].

Each of the subgames (Aij, Bij) where i = 1 . . . nf and j = 1 . . . nCT is a nonde-

generate bimatrix game. Then, following Shapley’s proof from [18], we may conclude

that there exists an odd number of equilibria for each subgame. In [22], the upper

bound on the number of equilibria in d× d bimatrix games was shown to be equal to
2.41d

d1/2
; however, the uniqueness of Nash equilibrium may still be proven only for several

special classes of bimatrix games. Here, we provide conditions that the bimatrix game

has to satisfy in order to have a unique completely mixed Nash equilibrium. Com-

pletely mixed Nash equilibrium is an equilibrium in which the supports of each of the

mixed equilibrium strategies are equal to the number of available pure strategies (i.e.,

each strategy from a mixed strategy set is played with a non-zero probability). As

shown by Milchtaich and Ostrowski [11], whose proof we re-state, a bimatrix game

(A,B) whose matrices A and B are square, has a unique completely mixed Nash

equilibrium if det(A, e) 6= 0 and det(B, e) 6= 0, i.e.:

det(A, e) · det(B, e) 6= 0, (7.13)

where e is a column vector with all entries 1.

The saddle point matrix (A, e) is given by:

(A, e) =

[
A e
eᵀ 0

]
. (7.14)

Then, the equilibrium strategies of the players are given as:

x∗i = − detBi

det(B, e)
, (7.15)

y∗i = − detAi
det(A, e)

, (7.16)

where Bi (Ai) is the matrix of B (A) with all entries of the i-th column (row) replaced

by 1.

Let us now suppose that (x∗, y∗) is an equilibrium point of the bimatrix game

(A,B), where x∗ is completely mixed. Then, every pure strategy would give that

player the same payoff P against the opponent’s strategy y∗, i.e.:

Ay∗ = Pe. (7.17)
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Since y∗ is a vector of probabilities,

eᵀy∗ = 1. (7.18)

Or, in matrix form: [
A e
eᵀ 0

] [
y∗

−P

]
=

[
0
1

]
. (7.19)

Following the assumption det(A, e) 6= 0 and by applying Cramer’s rule, it follows from

(7.19) that (7.16) is true for (i = 1, 2, ..., n) (in our case, n = nCT ·nf ). Similarly, the

same holds for x∗i. As shown by Milchtaich and Ostrowski [11]:

det(Ai, e) = det(Ai − eeᵀ)− det(Ai) = −detAi, (7.20)

hence (7.15) and (7.16) are shown to be true. This concludes the proof of the unique-

ness of the completely mixed equilibrium.

It may be computationally shown that all of the nf · nCT subgames constructed

within the considered game satisfy (7.13). Furthermore, by observing the Markov

state chains corresponding to the equilibrium points found by the LH method, it may

indeed be observed that supp(x∗) = supp(y∗) = nf · nCT , i.e., the equilibriums are

completely mixed. Trying to find multiple equilibria for each subgame using other

computational methods available within [9] has also resulted in a single (completely

mixed) equilibrium for each subgame: empirical evaluation of these results, based on

the algorithms to find all possible equilibrium points of the bimatrix game, further

points to the existence of a unique Nash equilibrium for each subgame.

One of the common criticisms of using computational algorithms such as LH for

finding Nash equilibria is that they fail to realistically capture the way that the

players involved in the game may reach the equilibrium point. For this reason, it

is useful to discuss the payoff performance and the convergence properties to Nash

equilibrium of the algorithms realistically used for learning in games. This discussion

is done for two multi-agent learning algorithms: fictitious play in Section 7.2.4.1 and

payoff-based adaptive play in Section 7.2.4.2.

7.2.4 Learning algorithms

Learning algorithms for MDPs have been extensively studied in the past [17, 20].

Based on their spectrum occupancy inference capabilities, an illustrating example of

the corresponding learning algorithms for the considered game and the dimensionality

of the action space is given in Figure 7.2
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Figure 7.2: Spectrum sensing capability vs. learning mechanism and action space

For Cognitive Radios that are not equipped with spectrum sensing capabilities

(gelocation/database-driven Cognitive Radios and Cognitive Radios utilizing beacon

rays), payoff-based reinforcement algorithms impose themselves as the optimal viable

learning algorithms. In these cases, each player is able to evaluate the payoff received

in every step and modify its strategy accordingly.

Cognitive Radios that are able to perform energy detection spectrum sensing, in

addition, also have the possibility of observing their opponents’ actions in each step

(influenced possibly by the accuracy of the deployed spectrum sensing mechanism).

By incorporating these observations into their future decision-making process, the

players may build and update a belief regarding the opponents’ strategy distribution.

This learning mechanism is called fictitious play.

Finally, Cognitive Radios that are able to perform feature detection spectrum

sensing may recognize important parameters of the opponent’s signal and use these

observations to their advantage. Since various waveforms exhibit different jamming

and anti-jamming properties, depending mainly on their modulation and employed

coding (see, for example, results by Poisel [15]), increased action space could consist

of switching between multiple modulation types or coding techniques.
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In this chapter, we focus our analysis on the first two cases. Algorithm 2 illustrates

the general formulation of the game. It can be seen how, in every step, each player

takes a decision ds for his next action based on their expected utility Ps = E[Ps|P1:s−1]

under PBAP or Ps = E[Ps|P1:s−1, ss1:s−1] under fictitious play. Received payoffs Ps

are calculated for each player using (7.1) and (7.2). Thereafter, spectrum sensing is

performed and the expected payoff is updated with the new information available.

To simplify explanation of the learning strategies and Algorithm 2, it is assumed that

both players perform the spectrum sensing step; however, the result of this step is

used only under fictitious play framework. For the players with perfect spectrum

sensing capabilities, ssTs = dTs and ssJs = dJs .

Algorithm 2 Game pseudocode

1: function Transmitter Jammer Game
2: nSteps← Number of steps
3: RT , RJ ← Rewards
4: CT , CJ ← Cost of hopping
5:

6: Initialize the expected utilities
7: s← 0
8: while s < nSteps do
9: dTs ← Decide Transmitter . Section 7.2.5

10: dJs ← Decide Jammer . Section 7.2.5
11: P T

s ← Transmitter utility . Equation (7.1)
12: P J

s ← Jammer utility . Equation (7.2)
13: ssdJs ← Transmitter Spectrum Sensing
14: ssdTs ← Jammer Spectrum Sensing
15: Transmitter.learn(P T

s , ssd
J
s ) . Section 7.2.4

16: Jammer.learn(P J
s , ssd

T
s ) . Section 7.2.4

17: s← s+ 1
18: end while
19: end function

Note from the pseudocode that the game consists of two main parts: the learning

algorithm, in charge of updating the expected payoffs, and the decisioning policy,

which uses the available observations to decide upon the future actions.

Let us assume that in step s the transmitter was transmitting with power CT
s on

the frequency fTs . Using one of the decisioning policies described in Section 7.2.5,

its action in the next step constitutes of transmitting with power CT
s+1 on frequency

fTs+1. We denote this action as a list of 4 elements dTs = [CT
s , f

T
s , C

T
s+1, f

T
s+1] for the

transmitter and the equivalent values dJs = [CJ
s , f

J
s , C

J
s+1, f

J
s+1] for the jammer.
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7.2.4.1 Fictitious play

Fictitious play [16] is an iterative learning algorithm where, at every step, each player

updates his belief about the stochastic distributions of the strategies of the other

players in the game. The application of a learning mechanism based on fictitious

play to the modelled game is constructed under the assumption that the player is

necessarily endowed with the spectrum sensing capabilities, allowing him to infer the

actions of the other player. A payoff of a particular action given the player’s current

state and the opponent’s action is deterministic and may be calculated using (7.1)

and (7.2) for the transmitter and the jammer, respectively. If the player has the in-

formation regarding the opponents’ action in each step, then it is possible to calculate

the expected utility more precisely, by accessing the history of the opponents’ actions.

This is particularly true for the jammer because of the higher number of non-jammed

states compared to the states of successful jamming. Hence, learning the transmitter’s

pattern as soon and with as much precision as possible makes a significant difference

to the overall payoff. This updating process is denoted in Algorithm 3.

Algorithm 3 Expected utility update under fictitious play

1: function FictiousExpectedUtilityUpdate
2: powers← Available powers
3: freqs← Available frequencies
4: SS ← Opponent’s state [Spectrum Sensing]
5: flist← Opponent’s previous states
6:

7: flist.append(SS)
8: for d ∈ possible actions do
9: sum← 0

10: for C, f ∈ powers, freqs do
11: N ← count (C, f) in flist
12: sum← sum+N · P (d[3], d[4], C, f)
13: end for
14: P T

s+1(d) = sum
s

15: end for
16: end function

It is known that the convergence of the fictitious play to Nash equilibrium is

guaranteed only for several special cases, such as zero-sum games, non-degenerate

2×n games with generic payoffs, games solvable by iterated strict dominance and

weighted potential games. For other types of games, including the game considered
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presented in this chapter, convergence to Nash equilibrium is not guaranteed, and

even when it converges, the time needed to run the algorithm to convergence may be

very long due to the problem being polynomial parity arguments on directed graphs

(PPAD)-complete [7]. This has led to the introduction of the concept of approximate

Nash Equilibrium (ε-equilibrium). Here, ε is a small positive quantity representing

the maximum increase in payoff that a player could gain by choosing to follow a

different strategy.

Conitzer [4] has shown that fictitious play achieves the worst-case guarantee of ε =

(r+1)/(2r) (where r is the number of fictitious play iterations) and in reality provides

even better approximation results. Furthermore, as recently shown by Ostrovski

and van Strien [13], fictitious play may in some cases outperform any actual Nash

equilibrium – for this reason, it is useful to study the performance of the fictitious

play algorithm in terms of average and final payoff compared to the Nash equilibrium.

7.2.4.2 Payoff-based adaptive play

Payoff-based adaptive play [3] is a type of reinforcement learning algorithm, where it

is assumed that the player does not have access to the information about the state of

the other player and relies on the history of his own previous payoffs. The expected

utility of ds given previous payoffs is given by Equation (7.21).

Ps+1(ds) = E[Ps(ds)|P1:s−1(ds)] =
Ps(ds) · s+ Ps(ds)

s+ 1
(7.21)

PBAP has been shown to converge to Nash equilibrium for zero-sum games [8]. For

general finite 2-player games, it was shown to converge to close-to-optimal solutions

in polynomial time [1].

In addition to comparing the performance of the PBAP to the computed Nash

equilibrium strategy from Section 7.2.3, of particular interest to this work is the com-

parison to the performance of the fictitious play. This comparison should reflect the

benefit that each player gains by being equipped with the spectrum sensing algorithm

(fictitious play) over not being equipped with it (PBAP).

7.2.5 Decisioning policies

Decisioning policy of the learning algorithm corresponds to the set of rules that the

player uses to select his future actions.
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7.2.5.1 Greedy decisioning policy

The most intuitive decisioning policy consists of always choosing the action that is

expected to yield the highest possible value based on the current estimates – the so-

called greedy decisioning policy [23]. However, a greedy method is overly biased and

may easily lead the learning algorithm to “get stuck” in local optimal solutions. An

example of this is given in Figure 7.3, where both players are employing the greedy

decisioning policy. Here, each player fairly quickly learns the “best response” to an

opponent’s action and starts relying on using it. Then, a significant amount of time

has to pass before his expected payoff for the given action drops enough that other

action starts being considered as “best response”, where in the meantime significant

payoff losses are sustained. This could partially be mitigated by introducing temporal

forgiveness into the learning algorithm.
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Figure 7.3: Expected payoff over time for the greedy decisioning policy and payoff-
based adaptive play learning algorithm.

7.2.5.2 Stochastically sampled decisioning policy

Another common approach to this issue is choosing a stochastically sampled policy

(also known as ε-greedy policy, [21]) where, at each step, a randomly sampled action

is taken with a probability p. We propose a variation of the stochastically sampled

policy where sampling is performed by scaling the expected payoff value of each action

to the minimum possible payoff for the game. For a minimum payoff PMIN and n
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actions with expected payoffs P (1) . . . P (n), the probability of choosing an action d

is given by (7.22):

p(d) =
P (d)− PMIN∑n
k=1 P (k)− PMIN

(7.22)

7.2.6 Experimental setup

In order to infer the parameters related to the occurrence of jamming, and to be able

to extract the physical parameters relevant for the game, a set of experiments using

the test bed architecture described in Chapter 4 is performed.

The measurements and parameters relevant for the constructed game are:

• Impact of interference on the quality of communication link;

• Transmission powers;

• Battery life of the HHs for varying transmission powers;

• Number of considered channels;

• Time needed to perform frequency hopping;

• Spectrum sensing time;

• Spectrum sensing detection accuracy.

The connection between the HandHelds (HHs) is established using the Soldier

Broadband Waveform (SBW). The waveform’s bandwidth is 1.3 MHz, and chan-

nel spacing is 2 MHz – large enough to disregard the influence of potential energy

spillover between adjacent channels. Experiments are done at 300 MHz central carrier

frequency.

Interference is created by injecting a single-tone signal onto the central carrier

frequency of the HHs. To measure the impact of interference, a set of Bit Error Rate

(BER) tests was performed for varying levels of transmission power and different levels

of interference. Results for three discrete values of transmission power: −12 dBW, 4

dBW and 7 dBW respectively, are presented in Figure 7.4. By setting the threshold

for the communication failure at BER=10-1, corresponding interference powers needed

to achieve the target BER for the observed values of transmission powers are found,

equaling to: 1, 6, and 9 dBW, respectively.
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Figure 7.4: SINR vs BER

Details on the implementation of the spectrum sensing are given in Chapter 4,

whereas details regarding all the data processing are presented in Chapter 6. In

summary, the whole data processing part currently lasts around 0.2s, making the

whole spectrum sensing cycle last approximately 1.3s.

HH’s battery time for states of continuous packet data stream (packets are gener-

ated by the BER test function) are measured for the identified relevant values of the

transmission power of −12, 4, and 7 dBW, equaling to 120, 94, and 90 min, respec-

tively. The results for the relevant transmission powers of the supposed jammer were

then linearly interpolated from the aforementioned, equaling to 99, 92, and 87 min,

respectively.

The relevant parameters are summarized in Table 7.1.

Table 7.1: Overview of the inferred parameters relevant for the game

 Transmitter Jammer 

Considered frequencies [MHz] (300, 302.65, 305.3) (300, 302.65, 305.3) 

Transmitting powers [dBW] (-12, 4, 7) (1, 6, 9) 

Battery life for TX powers [min] (120, 94, 90) (99, 92, 87) 

Spectrum sensing time [s] 1.3 1.3 

Frequency hopping time [s] 0.3 0.3 

Signal detection accuracy [%] (50,70,90,100) (50,70,90,100) 
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7.3 Results and major findings

Starting from the general expressions for the payoffs of the transmitter and the jammer

given in Equations (7.1) and (7.2), a short discussion is offered on the interpretation of

the parameters measured in the previous section and the feasibility of their application

to the proposed game. The discussion is followed by the simulation results.

7.3.1 Adaptation of the measured parameters to the pro-
posed game

One of the principal problems with introducing the experimental parameters in the

theoretical model is the method of aligning the parameters with different units (namely,

Watts and seconds), used in the equations (7.1) and (7.2). The first and the second

term represent the transmission (jamming) reward and penalty, which may be de-

fined arbitrarily. For the simulation purposes, we define them as R = 1 and X = −R
respectively.

Hopping cost, the third term of the equation, can be expressed as a function of the

reward. If the hopping is performed and the transmission is successful, the final utility

is decreased by the hopping cost, denoted as Rhαβ. Here, h = 0,3
1,3

is the proportion of

the time step where the transmission is not taking place due to the hopping process.

An increase of the transmission power, conversely, directly influences battery life.

For this purpose, transmission cost may be described as a function of battery life of

the radio, as denoted in (7.23). Maximum battery life corresponds to the minimum

transmission power of −12dBW , and equals to Bmax = 120 minutes. Transmission

costs of higher transmission powers are then scaled with respect to this value.

g(C) = R

(
1− B(C)

Bmax

)
(7.23)

Finally, for each step s, expression (7.1) may be re-written as (7.24) and expression

(7.2) as (7.25) for the transmitter and the jammer, respectively.

P T = RTα−RT (1− α)−RThαβ −R
(

1− B(CT
s )

Bmax

)
= RT

(
α(2−Hβ) +

B(CT
s )

Bmax
− 2

)
(7.24)
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P J = RJ(1− α) +RJα−RJhγ(1− α)−RJ

(
1− B(CJ

s )

Bmax

)
= RJ

(
Hγ(α− 1) +

B(CJ
s )

Bmax

)
(7.25)

Following the experiments denoted in Figure 7.4, the occurrence of jamming in step

s for the three couplets of transmission powers CT = (−12, 4, 7) and CJ = (1, 6, 9)

can be defined as (7.26). An overview of the adapted parameters is given in Table

7.2.

α =

{
1 if Ts > Js or fTs 6= fJs
0 if Ts ≤ Js and fTs = fJs .

(7.26)

Table 7.2: Overview of the parameters adapted to the game

 Transmitter Jammer 

R 1 1 

h 0.3

1.3
  

0.3

1.3
  

g(C) 0,
94

120
, 
90

120
 

99

120
, 
92

120
, 
87

120
 

Default prob. of misdetection [%] 0 0 

 

7.3.2 Simulation results

In this section, we analyze the performance of the considered learning algorithms

under the proposed game and compare it to the computed Nash equilibrium. All the

games are constructed using the parameters denoted in Table 7.2, unless indicated

otherwise. Default number of simulation steps is 10,000. Each simulation is repeated

100 times, and the points are averaged. It has been verified that each pair of the

constructed payoff matrices satisfy condition (7.15), guaranteeing uniqueness of a

completely mixed Nash equilibrium. In several games, a comparison with the player

whose strategy is fully randomized, i.e., whose taken actions are irrespective of his

observations, is performed.

Figure 7.5 shows the percentage of occurrences of successful jamming for different

dimensions of the players’ action sets, from games with one channel and one trans-

mission power, to four channels and three transmission powers. In all games, the

transmitter is deploying fictitious play learning, whereas the jammer is alternating
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between fictitious play (full lines) and random strategy (dashed lines). Benefit of

having the learning algorithm for the jammer is particularly prominent for the low-

dimensional games, where the transmitter is able to adapt to any static strategy of

the jammer (including fully randomized) and start exploiting it significantly.
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Figure 7.5: Number of jamming occurrences while the number of channels increases

To verify the importance of spectrum sensing capabilities corresponding to the

fictitious play learning algorithm, we propose the analysis of the overall utility of

each player when the opponent is utilizing payoff-based adaptive play. Furthermore,

in order to understand how the spectrum sensing accuracy affects the performance,

we consider a spectrum sensing mechanism with a certain probability of misdetection.

For the simplicity of analysis, we disregard the fact that the misdetection probability

realistically depends on the instantaneous Signal to Interference and Noise Ratio

(SINR). Figures 7.6 and 7.7 show the results of these simulations for the transmitter

and the jammer, respectively. In the left side of the figures, the overall payoff obtained

during the game for each player is shown. For the visualization purposes, a trend is

removed in the right side of the figures.

From Figure 7.6, it is evident that the compared schemes perform almost equally

– regardless of the misdetection probability – for the transmitter. This points to

the conclusion that the optimal strategy of the transmitter under the considered

game when the jammer is endowed with the learning algorithm is not too far from

“random”. Conversely, Figure 7.7 demonstrates once again the significance of the
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spectrum sensing for the jammer side, as its overall payoff is significantly higher when

utilizing fictitious play, compared to payoff-based adaptive play, even for sub-optimal

spectrum sensing mechanisms (mechanisms with higher probabilities of misdetection).

In order to study this occurrence in more detail and in order to facilitate the com-

parison, we next present these results in the forms of normal distributions. Figure 7.8

shows performance of the transmitter using PBAP learning algorithm in the upper

part and fictitious play in the bottom part, for different learning algorithms of the

jammer. Similarly, Figure 7.9 shows performance of the jammer employing PBAP

learning algorithm in the upper part and fictitious play in the bottom part, for dif-

ferent learning algorithms of the transmitter. The title of each subplot denotes the

learning algorithm utilized by the observed player while colors of the lines are used

to differentiate between the learning strategies of the opponent.
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Figure 7.8: Difference in the overall payoff for the transmitter under different learning
policies.

The results verify that the performance of the transmitter is very similar while

using PBAP (top part) and fictitious play (bottom part). The exception is the case

when the jammer employs fictitious learning. In this case, transmitter will benefit

slightly more by also deploying fictitious play in order to infer the jammer’s strategy

as soon as possible. The results for the jammer confirm our intuition - significantly

better results for both cases are obtained using fictitious play.
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Next, we aim to show how evolution of the game is influenced when the parameters

of the game are modified. As explained previously, the state/action space of the

players can be depicted by Markov chains, where each Markov state represents the

current state of the player, and each edge the probability of taking an action leading

to the new state. A graphical representation of the Markov transition probabilities is

difficult to interpret for the full set of states of high-action-space games (higher than

2×2). Some examples of the full Markov chains for small action spaces were presented

by Dabcevic et al. [5]. This problem can partially be alleviated by creating state-

grouped Markov chains, as shown in Figure 7.10a,b. Here, the number refers to the

ordinal number of transmission power (i.e., ’1’=−12 dBW for the transmitter, ’1’=1

dBW for the jammer, etc.). Actions pertaining to frequency hopping are grouped

and marked as ’h’, while actions of staying on the same frequency are marked as ’s’.

Then, the simulations are done for two extreme values of the hopping cost: 0.01

and 1.3, while keeping all other parameters the same. Figure7.11a,b shows the dif-

ferences in final stochastic distributions of the transmitter’s strategies. As expected,

evident trend of the learning algorithm focuses on placing more importance on action

’s’ as the hopping cost increases.

Stochastic distributions of the mixed strategy Nash equilibrium for the transmitter

and the jammer under the default game parameters may be shown in the form of the
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Figure 7.10: State-grouped Markov chain with the default parameters.

145



(1, 's') 10.24% 

(2, 's')

11.31% 

(3, 's')

12.46% 

(1, 'h')

20.33% 

(2, 'h')

21.96% 

(3, 'h')

23.71% 

11.65% 

10.14% 

12.05% 

19.65% 22.59% 23.91% 

10.21% 

11.48% 

10.73% 

22.29% 20.47% 24.81% 

(a) PBAP - Transmitter (0.01 cost of hopping)

(1, 's') 14.4% 

(2, 's')

15.38% 

(3, 's')

17.54% 

(1, 'h')

17.99% 

(2, 'h')

17.43% 

(3, 'h')

17.26% 

16.79% 

15.12% 

16.65% 

16.76% 16.71% 17.97% 

13.77% 

14.91% 

16.35% 

19.93% 17.65% 17.38% 

(b) PBAP - Transmitter (1.3 cost of hopping)

Figure 7.11: State-grouped Markov chain for different hopping cost

146



state-grouped Markov chains as well, as done in Figure 7.12a,b.

Finally, we perform the evaluation of the convergence to Nash equilibrium in terms

of overall payoff for the considered learning algorithms.

Figure 7.13 shows the convergence to Nash equilibrium in terms of payoff for ficti-

tious play. Here, the red line shows the payoff obtained when both players are playing

Nash equilibrium strategies. Blue line shows the case when the transmitter is playing

the Nash strategy, and the jammer is deploying fictitious play. As can be seen for

the jammer in the bottom part of the figure, fictitious play is able to obtain perfor-

mance nearly as good as the strategy played in Nash equilibrium, when the opponent

is playing according to Nash strategy. Similar conclusions, although once again less

prominent, may be drawn from the upper part of the figure for the transmitter playing

fictitious play, and the jammer playing according to Nash equilibrium. The results

are compared to the flow of the game when both players are playing according to

fictitious play (black line). The results are in line with those presented by Conitzer

[4]: fictitious play indeed seems to converge in payoff to ε-equilibrium.

Similar results are obtained for the PBAP when faced against the Nash strategy.

Figure 7.14 shows the convergence comparison for the jammer.

7.4 Conclusions

This chapter has introduced game theory as a tool for analyzing jamming/anti-

jamming problems between intelligent entities. A Cognitive Radio stochastic jam-

ming/ anti-jamming game between two players was modelled. Increased action space

of the anti-jamming algorithm was created by combining power alteration and chan-

nel hopping. Two learning algorithms were considered: payoff-based adaptive learn-

ing corresponding to radios without spectrum sensing capabilities and fictitious play

which may be utilized by the spectrum sensing radios. In addition to their perfor-

mance, their convergence properties to Nash equilibrium in terms of overall payoff

and empirical distributions of the strategies were studied. In order to narrow the

gap between the theoretical constraints inherent to game theory and practical as-

pects of the communication systems, relevant parameters for the game were inferred

by performing a set of experiments using the real-life Software Defined Radio test

bed. The major finding is the importance of the spectrum sensing endowment for the

jamming side, compared to relatively insignificant benefits for the transmitting side

in proactive anti-jamming games. In addition, evolution dynamics for different game

parameters were presented.
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Figure 7.12: State-grouped Markov chain for transmitter and jammer playing Nash
equilibrium strategies
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Figure 7.13: Comparison of fictitious play to Nash equilibrium strategy.
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Deployment of feature detectors is a logical next step in the arms race between the

narrowband jammers and the anti-jamming systems. However, introduction of the

additional parameters under the currently proposed framework would increase the

action space to the point of infeasibility for analysis. For this purpose, future work

will focus on finding ways for clusterizing overly complex action spaces and further

optimizing their graphical representations by the means of state-grouped Markov

chains.
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Chapter 8

Conclusions and future
developments

Radio Frequency (RF) jamming is defined as illicit RF transmission aimed at disabling

the communication on the targeted system. Cognitive Radio is a radio that is RF-

aware, and is able to autonomously reconfigure its transmission parameters in order to

improve its efficiency. When Cognitive Radios are used in the domain of the jamming

and anti-jamming systems, such systems are considered intelligent. This thesis has

studied the impact of Cognitive Radios in the domain of the intelligent jamming and

anti-jamming solutions. It has presented practical solutions and concrete ideas to

help move the current tactical battlefield solutions beyond the state of the art.

8.1 Summary of contributions and major findings

Main contributions of the thesis are summarized as follows:

• A comprehensive overview of the main security issues related to Cognitive Ra-

dios was presented. Main identified threats to Cognitive Radio systems were

Primary User Emulation attacks, Byzantine attacks, Objective Function at-

tacks, and intelligent jamming attacks. In addition, Cognitive Radios that are

built on a Software Defined Radio (SDR) architecture inherit the corresponding

security issues related to SDR technology. Furthermore, they are susceptible to

many of the threats associated with legacy radio systems, which mainly stem

out from the open nature of the wireless medium.

• An SDR/Cognitive Radio test bed architecture able to operate in VHF and UHF

parts of the frequency band was implemented. The architecture was comprised

of military SDRs, computationally powerful embedded systems in charge of
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signal processing, and several off-the-shelf components and auxiliaries. The

architecture was designed to allow for real-time testing and validating of all

relevant developed algorithms.

• An intelligent self-reconfigurable system for jamming mitigation was proposed.

The system was deployed and tested on the aforementioned SDR/Cognitive Ra-

dio architecture. The algorithm exhibited high level of accuracy in recognizing

relevant RF spectrum activities, and was able to execute itself in real time.

• A game-theoretical approach to formalizing intelligent jamming and anti-jamming

problems was proposed. Major results included the analysis of importance of

spectrum sensing endowment for jamming and anti-jamming Cognitive Radio

systems.

8.2 Future developments

The work presented in this thesis opened several interesting future research topics.

The most important ones are summarized as follows:

• One of the bottlenecks of the Spectrum Intelligence for Interference Mitigation

algorithm is low spectrum resolution. Performed analysis of the compressed

spectrum sensing techniques indicated that sub-Nyquist sampling could be a

remedy for this problem. Compressed spectrum sensing is currently deployed

in the processing stage of the algorithm, however future modifications will see

it deployed in the pre-processing stage, i.e., prior to buffering and outputting

the spectrum samples to the external module in charge of signal processing.

• One of the security issues of all self-reconfigurable entities that rely on machine

learning mechanisms is the possibility that the entity gets deceived into learning

incorrect patterns. In the Cognitive Radio domain, this is know as the Objective

Function attack. Furthermore, the system could make erroneous assumptions

due to the imperfections related to its sensors, or the software flaws of the

learning system itself. As a result, system may take sub-optimal actions that

may seriously degrade overall performance. This introduces the motivation for

cognitive refinement of the mechanism by learning from the human operator in

the loop. For the Spectrum Intelligence algorithm, a graphical user interface

that allows the human operator to override the decisions of the algorithm was

developed. Future work will focus on finding methods that would allow the
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algorithm to refine its reasoning process by learning from the actions of the

human operator.

• The proposed game-theoretical approach is modeled using the parameters ob-

tained experimentally from the assembled test bed architecture. Future work

will include testing the proposed game-theoretical scheme using the developed

test bed architecture in real-time, and comparing the results with those obtained

from the simulations.
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Abbreviations

AD Analog-to-Digital

ADC Analog-to-Digital Converter

AES Advanced Encryption Standard

AKA Authentication and Key Agree-

ment

AM Amplitude Modulation

ANN Artificial Neural Network

AWGN Additive White Gaussian Noise

BEE2 Berkeley Emulation Engine

BER Bit Error Rate

BP Basis Pursuit

BPSK Binary Phase Shift Keying

BS Base Station

CCC Common Control Channel

CODEC Coder-Decoder

CS Compressed Sensing

DAC Digital-to-Analog Converter

DC Direct Current

DoS Denial of Service

DSA Dynamic Spectrum Access

DSP Digital Signal Processor

DSS Dynamic Spectrum Sharing

EAP Extensible Authentication Protocol

EMCON Emissions Control

FM Frequency Modulation

FPGA Field Programmable Gate Array

FSK Frequency Shift Keying

GPP General Purpose Processor

GPRS General Packet Radio Service

GPS Global Positioning System

GSM Global System for Mobile Commu-

nications

GTK Group Temporal Key

GUI Graphical User Interface

HH Handheld

ICNIA Integrated Communications,

Navigation, and Identification Architec-

ture

IEEE Institute of Electrical & Electronic

Engineers

IF Intermediate Frequency

IMSI International Mobile Subscriber

Identity

ISM Industrial, Scientific and Medical

ITU International Telecommunication

Union

IV Initialization Vector

JSR Jamming to Signal Ratio

JTRS Joint Tactical Radio System

LH Lemke-Howson

LPD Low Probability of Detection

LPI Low Probability of Interception

LTE Long Term Evolution

MAC Media Access Control

MANET Mobile Ad-hoc NETwork

MDP Markov Decision Process
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MIB Management Information Base

MIMO Multiple Input Multiple Output

MP Matched Pursuit

MS Mobile Station

NE Nash Equilibrium

NSA National Security Agency

OFA Objective Function Attack

OID Object IDentifier

OMP Orthogonal Matched Pursuit

PBAP Payoff-Based Adaptive Play

PDF Probability Density Function

PKI Public Key Infrastructure

PSK Pre-Shared Key

PSK Phase Shift Keying

PTT Push-To-Talk

PU Primary User

PUEA Primary User Emulation Attack

QoS Quality of Service

QPSK Quaternary Phase Shift Keying

RA Radio Applications

REM Radio Environment Map

RF Radio Frequency

ROE Radio Operating Environment

RSNA Robust Security Network Associ-

ation

RSS Received Signal Strength

SBW Soldier Broadband Waveform

SCA Software Communications Archi-

tecture

SDR Software Defined Radio

SER Symbol Error Rate

SINR Signal to Interference plus Noise

Ratio

SNMP Simple Network Management

Protocol

SNR Signal to Noise Ratio

SoM System-on-Module

SPA Service Provider Applications

SRM Secure Radio Middleware

SSL Secure Socket Layer

SU Secondary User

SWAVE HH Secure Wideband Multi-

role - Single-Channel Handheld

TCP Transmission Control Protocol

TKIP Temporal Key Integrity Protocol

UA User Applications

UHF Ultra High Frequency

USB Universal Serial Bus

USRP Universal Software Radio Periph-

eral

VGA Video Graphics Array

VHF Very High Frequency

VULOS VHF/UHF Line Of Sight

WEP Wired Equivalent Privacy

WLAN Wireless Local Area Network

WMB Wireless Microphone Beam

WPA Wi-fi Protected Access

WPA-PSK Wi-fi Protected Access Pre-

Shared Key

WRAN Wireless Regional Area Network
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